
Chapter 11

The Fundamental Group

We introduce the fundamental group as the first algebraic invariant asso-
ciated to a topological space. The fundamental group, π1(X,x0), is the
primary tool in algebraic topology for distinguishing spaces based on the
“holes” they contain. We begin by developing the notion of homotopy, which
formalizes the notion of continuously deforming one map into another. We
give particular emphasis on homotopies of paths and loops, and explain how
path homotopy leads naturally to an equivalence relation on loops based at a
point. Using concatenation of paths, we show how these equivalence classes
acquire a group structure. The central example of the chapter is the circle
S1: Using the lifting properties of the exponential map (the covering map
p : R → S1) and analyzing how loops wind around the circle, we compute
its fundamental group explicitly and show that

π1(S
1) ∼= Z.

This computation provides an essential bridge between the abstract ma-
chinery of homotopy and concrete algebraic structures. Along the way, we
emphasize the geometric meaning of homotopy and winding number, setting
the stage for further applications of covering spaces and higher homotopy
invariants.
We assume familiarity with basic point-set topology, e.g. Ch. 1–7 of [Mor24].

Acknowledgements. The exposition in Section 1 is modeled after [Mun00,
Sec. 51–52]. Our proof of π1(S

1) ∼= Z follows that of [Hat02, Theorem 1.7].
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1. Defining the Fundamental Group

Let I = [0, 1] denote the unit interval.

Definition 1.1. Suppose f and f ′ are continuous maps X → Y . We say
that f is homotopic to f ′ if there exists a continuous map

F : X × I → Y

such that F (x, 0) = f(x) and F (x, 1) = f ′(x). We say that F is a homotopy
between f and f ′, and we write f ∼= f ′ to say that f and f ′ are homotopic.

We say that a path is nullhomtopic if it is homotopic to a constant map.
Intuitively, a homotopy represents a way to continuously transform f into
f ′. Indeed, by considering F (x, t) and varying t from 0 to 1, we start at f
and end up at f ′.
We will mostly be interested in the case where f and f ′ are paths, i.e. con-
tinuous maps [0, 1] → X. For a path f , we define the initial point and final
point in the obvious way: f(0) = x0 is the initial point, and f(1) = x1 is the
final point.

•x1

•x0

I × I

F (0, t)

g ∼=P f

F (1, t)

f

Figure 1. Path homotopy
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An interesting question to ask is when two different paths from x0 to x1 are
“equivalent”. This is formalized by the notion of path homotopy, which is
stronger than ordinary homotopy.

Definition 1.2. Two paths f, f ′ : I → X are said to be path homotopic if
they have the same initial and final points x0, y0, and there exists a homotopy
F : I × I → X between them such that F (0, t) = x0, F (1, t) = x1 for all
t ∈ I. We call such a homotopy a path homotopy, and write f ∼=P f ′ to say
that f and f ′ are homotopic.

So a path homotopy imposes the additional constraint that the endpoints
must stay fixed throughout the continuous transformation. A visualization
of path homotopy is shown in Figure 1.

Example 1.1. To see why this notion is stronger than ordinary homotopy,
consider the paths f , f ′ from (1, 0) to (0,−1) in X = R2/{(0, 0)} given by

f(x) = (cos(πx), sin(πx)) and f ′(x) = (cos(πx),− sin(πx)).

These two paths are homotopic because we can continuously transform one
into the other, as shown in Figure 2.

Figure 2. Homotopy vs. path homotopy

However, if the endpoints are fixed, it is impossible to continuously transform
f into f ′ without hitting (0, 0), so these two paths are not path homotopic.
However, rigorously proving this requires some work. It follows from our
computation of the fundamental group of the circle below, along with some-
thing called deformation retracts.

Next, we have a simple lemma that tells us that homotopy behaves as we
would expect it to.

Lemma 1.1. The homotopy and path homotopy relations ∼= and ∼=P are
equivalence relations.

Proof. That f ∼= f and f ∼=P f are obvious; the map F (s, t) = f(s) gives
the desired (path) homotopy.
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If f ∼= g, corresponding to the homotopy F : I × I → X, then F (s, 1 − t)
gives a homotopy g ∼= f , and similarly for the case of path-homotopy.
Finally, if f ∼= g and g ∼= h, with homotopies F and G, then H : I × I → X
defined by

H(s, t) =

{
F (s, 2t) t ∈ [0, 12 ]

G(s, 2t− 1) t ∈ [12 , 1]

is a homotopy f ∼= h. Again, the path-homotopy case is similar. □

Next, we define a way to “glue paths together”.

Definition 1.3. Suppose f is a path in X from x0 to x1 and g is a path
from x1 to x2. We define the product f ∗ g by

(f ∗ g)(s) =

{
f(2s) s ∈ [0, 12 ],

g(2s− 1) s ∈ [12 , 1].

It is easily checked that the product f ∗ g is a path from x0 to x2, and
furthermore, this operation is well-defined up to path-homotopy, i.e. if f ∼=P

f ′ and g ∼=P g′, then f ∗ g ∼=P f ′ ∗ g′. Hence, using [f ] to denote the
equivalence class of f under path-homotopy, we can write [f ] ∗ [g] = [f ∗ g].
Next, we show that the product of (equivalence classes of) paths satisfies the
axioms that we would expect a product to have.
Let for x ∈ X, ex denote the constant path sending all of I to the point x.

Theorem 1.2. The product operation satisfies the following:

• Associativity:

[f ] ∗ ([g] ∗ [h]) = ([f ] ∗ [g]) ∗ [h],

when f(1) = g(0) and g(1) = h(0).
• Identities:

[f ] ∗ [ex1 ] = [f ] and [ex0 ] ∗ [f ] = [f ],

where f is a path from x0 to x1.
• Inverses:

[f ] ∗ [f ] = [ex0 ] and [f ] ∗ [f ] = [ex1 ],

where f is a path from x0 to x1 and f(s) = f(1− s) is the reverse of f .

Proof. These properties are all quite “obvious”, but require a bit of care to
prove. We freely use the following two easy observations.
First, if k : X → Y is continuous, and F is a path homotopy in X between
two paths f and f ′, then k ◦ F is a path homotopy in Y between the paths
k ◦ f and k ◦ f ′.
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Second, if k : X → Y is continuous, and f and g are paths in X with
f(1) = g(0), then k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g).
Now we prove the three properties.

• Associativity: Consider the function p whose graph is shown in blue in
Figure 3. This function can be thought of as a path in I from 0 to 1.
It is clearly homeomorphic to the identity map i : I → I (which is the
red graph). A homeomorphism can be written down explicitly, but it is
much easier to see this visually. Then, applying (f ∗ g) ∗ h to these two

1
2

3
4

1

1
4

1
2

1

Figure 3. Associativity

paths, we get (f ∗g)∗h = ((f ∗g)∗h)◦ i and f ∗ (g ∗h) = ((f ∗g)∗h)◦p.
Hence, the paths (f ∗ g) ∗ h and f ∗ (g ∗ h) are homotopic.

• Identity: Consider the two paths in I from 0 to 1 [Figure 4]. It is clear
that these are homotopic. Applying the continuous map f : I → X, it
follows that f and ex0 ∗ f are homotopic. We have a similar proof for
the second statement.

1
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Figure 4. Identities
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Figure 5. Inverses
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• Inverse: Consider the two paths in I from 0 to 0 [Figure 5]. As in the
previous case, they are evidently homotopic, and applying f : I → X,
the red path maps to f ∗ f , and the blue path maps to ex0 . Hence f ∗ f
and ex0 are homotopic.

This completes the proof. □

We can finally define the fundamental group.
Let X be a space, and suppose x0 is a point of X. We call a path on X
that starts and ends at x0 a loop based at x0. Note that ∗ defines a binary
operation on the set of loops. By Theorem 1.2, it in fact defines a group
structure, with ex0 as the identity.

Definition 1.4. The fundamental group of X relative to the base point x0
is the set of loops based at x0, with the operation ∗. We use π1(X,x0) to
denote this group.

This is also called the first homotopy groups. There exist higher-order ho-
motopy groups; in fact there is a πn(X,x0) for every positive integer n. We
will not study these here.
As one can probably guess from considering various examples of X, such as
the unit circle, the figure-eight, or a torus, the fundamental groups should
not really depend on the base point.
This turns out to be the case. Suppose x0, x1 are two distinct points in X,
and we have a path α from x0 to x1. Then, the map

α̂ : π1(X,x0) → π1(X,x1)

given by
α̂([f ]) = [α] ∗ [f ] ∗ [α]

defines an isomorphism between the two groups. Before we prove this, we
remark that the definition of this homomorphism resembles the conjugation
action in a group; and indeed the proof that this is an isomorphism mirrors
the proof that conjugation is an automorphism.
To check that this is a homomorphism, note that

α̂([f ] ∗ [g]) = [α] ∗ [f ] ∗ [g] ∗ [α]
= [α] ∗ [f ] ∗ [α] ∗ [α] ∗ [g] ∗ [α]
= α̂([f ]) ∗ α̂([g])/

Finally, note that α̂ is an inverse to α̂, so α is an isomorphism.
Consequently, we have

Proposition 1.3. If X is path-connected, then all the fundamental groups
π1(X,x0) are isomorphic.
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Since we can split any topological space into path-connected components, it
suffices to consider path-connected spaces when dealing with the fundamen-
tal group.
For spaces like Rn, or a n-dimensional ball, (or in fact any convex subset of
Rn) it is not too hard to see that any loop is nullhomotopic, which implies
that the fundamental group is trivial. Such spaces have a name.

Definition 1.5. A space X is called simply connected if it is path-connected
and its fundamental group is trivial.

2. The Fundamental Group of the circle

Let S1 denote the circle (the subspace of R2 of points that are a distance
1 from the origin). In this section, we prove that the fundamental group of
the circle is isomorphic to Z.
It is clear that for each positive integer n, looping counterclockwise around
the unit circle n times gives a loop [fn] ∈ πn. Similarly, we can define a loop
[f−n] which loops n times in the clockwise direction. Adding the identity
loop f0, we get a loop fn for all n ∈ Z, and furthermore it is clear that

[fm+n] = [fm] ∗ [fn],

so the group operation matches that of Z. However, we are not even close to
done! We need to show that (a) these loops are non-homotopic and (b) there
are no other homotopy classes of loops. To do this, we use a very clever idea
called covering maps.
The essence of this idea is that we use the homotopy structure of a space we
are familiar with (like R) to understand the homotopy structure of a more
complicated group.
Consider the map p : R → S1 given by

p(x) = (cos(2πx), sin(2πx)).

This is evidently a continuous map. Intuitively, we can think of p as “wrap-
ping” R around the unit circle. In another way, by plotting the points
(x, p(x)) in R3, we get a helix, and we are “collapsing” this helix onto the
unit circle, as shown in Figure 6.
Given a path f : I → S1, we define a lifting of f to R to be a path f̃ such
that p ◦ f̃ = f .

Proposition 2.1. We have the following.
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R

S1

p

Figure 6. Collapsing the real line (R) onto a circle (S1)

(1) Any path f : I → S1 starting at (1, 0) has a unique lifting to a path
f̃ : I → R that starts at 0.

(2) For any path homotopy F : I × I → S1 between paths starting at (1, 0),
there is a unique lifting to a path homotopy F̃ : I × I → R.

These are both direct consequences of the following, more general result.

Theorem 2.2. Suppose we have maps F : Y × I → S1 and F̃ : Y ×{0} → R
so that F̃ lifts F |Y×{0}. Then there is a unique map F̃ : Y × I → R that lifts
F and restricts to the given F̃ on Y × {0}.

Proof. This only relies on one important property of the projection p : R →
S1, which is the following.

(∗) There is an open cover {Uα}α∈A of S1 such that for each α, p−1(Uα)
can partitioned into (disjoint) open sets such that each of them is mapped
homeomorphically onto Uα by p.

In our specific case, we could take U1, U2 to be two open arcs that cover S1.

The idea behind the proof is as follows: due to (∗), if we “zoom in” on a
sufficiently small neighborhood, p acts like a homeomorphism, so on this
neighborhood, defining F̃ is easy. Then, we can “patch together” all of the
neighborhoods to get the function F̃ .
We start with some point y0 ∈ Y , and we will define F̃ on N × I, for some
neighborhood N of y0 in Y . Since F is continuous, every point (y0, t) has
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a neighborhood of the form Nt × (at, bt) for some neighborhood Nt of y0.
Since {y0} × I is compact, we can pick finitely many of these that cover
it. Intersecting all the Nt corresponding to these neighborhoods, we get a
neighborhood N of y0 and some partition 0 = t0 < t1 < · · · < tm = 1 such
that F (N× [tk, tk+1]) is contained in some Uα for all k. The neighborhood N
will not be the final neighborhood we end up with, because we will be forced
to make it smaller as we apply the “patching-together argument”, starting
from F̃ (N×{0}) (which is given to us since F̃ is already defined on Y ×{0}).
Assume inductively that we have defined F̃ on N× [0, tk]„ for 0 ≤ k ≤ m−1.
Then F (N × [tk, tk+1]) ⊂ Uα for some α, and F̃ (y0, tk) ∈ V , where V is one
of the homeomorphic images of Uα in p−1(Uα) coming from the property
(∗). By replacing N with N ∩ F̃ [N × {tk}]−1(V )) (i.e. the set of n ∈ N so
that F̃ (n, tk) ∈ V ), we may assume that F̃ (N × {tk}) ⊂ V . Now, defining
F̃ on N × [tk, tk+1] is easy: we can simply set it to be the composition
of the maps F and p−1 : U → V (which exists since p|V : V → U is a
homeomorphism). Repeating this process finitely many times, we get the
desired lift F̃ : N × I → R.
Now, we would like to be able to path all of the F̃ constructed above together
to get the final function F̃ . However, to do this, we need to know that if two
such neighborhoods intersect, then the corresponding F̃ must agree. To do
this, we first prove that the map F̃ is unique when Y is a point.
In this case, we can just consider F̃ and F̃ ′ as maps I → S1 and I → R,
respectively, such that F̃ (0) is given. Suppose we have two lifts F̃ and F̃ ′;
then F̃ (0) = F̃ (0)′. Then, running a very similar version of above argument,
we can get a partition

0 = t0 < t1 < · · · < tm = 1

such that for each k, F ([tk, tk+1]) is contained in some Uα. Then, assume
inductively that F = F̃ on [0, tk]. Since F̃ ([tk, tk+1)] is connected, it must
be contained in some V appearing in the partition of p−1(Uα) so that pV :
V → U is a homemomorphism. Furthermore, this V is forced by the value
of F̃ (tk) = F̃ ′(tk). It similarly follows that F̃ ′([tk, tk+1]) is also contained in
V . Since p is a bijection V → U and both F̃ and F̃ ′ are lifts of F , it follows
that F̃ = F̃ ′ on [tk, tk+1]. By induction, it follows that F̃ = F̃ ′.

Now, getting back to the general case, note that F̃ (y0 × I) is a valid lift of
F (y0 × I), and corresponds to the case when y is a point. Hence F̃ (y0 × I)
is unique. Thus whenever two neighborhoods of the form N × I intersect,
their corresponding F̃ defined above must agree on the intersection. This
allows us to “patch together” these F̃ to get a valid lifting of F . Finally, this
function is unique since each F̃ (y0 × I) is. □
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Theorem 2.3. The fundamental group of S1 is isomorphic to Z.

Proof. For a path f : I → R from 0 to some n ∈ Z, the path p ◦ f is a
loop based at (1, 0) in S1. Since p is continuous, homotopic paths f give
homotopic loops, so we can define

Φ(n) = [p ◦ f ].

We claim that this is an isomorphism Z → π1(S
1, (1, 0)). First, we check

that this is a homomorphism. If f is a path in R from 0 to n and g is a path
from 0 to m, we prove that

Φ(m+ n) = Φ(m) ∗ Φ(n) = (p ◦ f) ∗ (p ◦ g)

as follows. Let h = f ∗ (g + n), where g + n is the path given by

(g + n)(s) = g(s) + n.

Note that p(h) = (p ◦ f) ∗ (p ◦ (g + n)). However, p ◦ (g + n) = p ◦ g since p
is 1-periodic. Hence, Φ(m+ n) = [p(h)] = (p ◦ f) ∗ (p ◦ g).
Next, we prove bijectivity. By Theorem 2.1, every loop in π1(S

1, (1, 0)) has
a unique lifting to a path f̃ : I → R that starts at 0. The ending point of
this path must be some integer n, and it follows that p ◦ f̃ = f , so f ∈ Φ(n).
Hence, Φ is surjective. Finally, suppose that Φ(n) = Φ(m). Then, f0 ∈ Φ(n)
and f1 = Φ(m) are homotopic. By part (2) of Theorem 2.1, this homotopy
lifts to a unique path homotopy F̃ : I × I → R. By the definition of a path
homotopy, it follows that F̃ (s, 0) and F̃ (s, 1) have the same ending points.
These are lifts of f0 and f1, respectively. By uniqueness of these lifts, the
ending points must be m and n, so m = n. Hence, Φ is injective, and this
completes the proof. □

Remark 2.1. Theorem 2.3 has many nice consequences. For example, it can
be used to give a very clean proof of the Fundamental Theorem of Algebra,
which states that every nonconstant polynomial p(x) over C has a root in C.
Given a proposed counterexample to this statement, the idea is to consider
the function

fr(s) =
p(re2πis)/p(r)

|p(re2πis)/p(r)|

which defines a loop in S1 for any r ≥ 0. If p has no roots, then fr(s)
continuously varies as r does, and it follows that all the fr are homotopic.
However, as r → ∞, the lower-order terms become insignificant and fr(s)
approaches the loop Φ(n), where n is the degree of f . However, as r → 0,
fr(s) approaches the trivial loop. But by Theorem 2.3, these two loops are
not homeomorphic in S1, which yields a contradiction.
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For another application, we can use Theorem 2.3 to prove that any continu-
ous mapping of the closed unit disk (in R2) to itself has a fixed point. This
is called the Brouwer fixed point theorem (in dimension 2).

...

p−1(U)

p

U

Figure 7. Covering maps

The map p in the above argument is an example of a covering map. In
general, a covering map is a continuous map p : E → B satisfying the
property (∗), with R replaced by E and S1 replaced by B. We say that E
is a covering space of B. See Figure 7 for a visualization of a covering map.
The proof of Theorem 2.2 works just as well for arbitrary covering maps, and
indeed, this is the fundamental property of covering maps that makes them
so powerful. In general, we get a correspondence π1(B, b0) → p−1(b0) that
sends a loop to the ending point of its image from the generalized version
of Theorem 2.2. If the space E is simply connected, then the ending point
uniquely specifies the homotopy class of this path, and hence it uniquely
specifies the loop. Therefore, this map is in fact a bijection. It follows that
if we are able to find a simply connected covering space, we have essentially
understood the fundamental group.
Indeed, this technique can be used to deduce a lot of useful information about
fundamental groups. For another example, a well-chosen covering map tells
us that the fundamental group of the figure-eight is not abelian (and hence
not isomorphic to the fundamental group of the circle).
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