
Chapter XV

Height, Krull Dimension,
and Localization

This chapter bridges the gap between abstract ring theory—commutative
algebra up to irreducibility and factorization in integral domains—and the
geometric intuition of algebraic geometry. Our goal is to introduce three
central notions—prime ideals and height, Krull dimension, and localization.
We will explore how the “size” of a ring (its Krull dimension) corresponds
to the dimensions of geometric objects like curves and surfaces, and how
localization allows us to zoom in on specific points. We will then weave these
concepts together with concrete geometric examples coming from coordinate
rings of algebraic varieties of dimensions 0, 1, and 2, as well as some counter-
intuitive examples.

1. Height of a Prime Ideal

Recall that prime ideals generalize irreducible elements: an ideal p ⊂ R is
prime if ab ∈ p implies a ∈ p or b ∈ p. In the polynomial ring k[x], over the
field k, the prime ideals are (0) and (f) for irreducible f . In k[x, y], primes
already come in several geometric flavors:

• (0), corresponding to the whole affine plane;

• primes like (f), defining irreducible curves;

• maximal ideals (x− a, y − b), corresponding to points.

Thus a chain of prime ideals

(0) ⊂ (f) ⊂ (x− a, y − b)
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reflects a chain of geometric specializations: plane → curve → point. The
exact nature of this correspondence comes from considering the zero set of an
ideal: the set of points where (x− a, y− b) vanishes is just {(a, b)}, whereas
the zero set of a single irreducible polynomial f defines a curve, and the zero
set of the ideal (0) is the whole plane.

Definition 1.1. The height of a prime ideal p in a ring R is the maximum
length h of a chain of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ ph = p

in R.

Intuitively, height counts how many independent algebraic constraints are
imposed in reaching p. For example:

• In k[x], maximal ideals (x− a) have height 1.
• In k[x, y], maximal ideals (x− a, y − b) have height 2.

We will make precise these correspondences later on.

Proposition 1.1 (Exercise 2.9). If R is a UFD, then every prime ideal of
height 1 in R is principal.

Proof. Suppose that R is a UFD, and let p be a prime ideal of height 1. If p
contains no irreducible element then we could generate an infinite sequence

a1, a2, a3, . . . ∈ p

such that ak+1 is a proper divisor of ak for each k = 1, 2, 3, . . . . This would
then give

(a1) ⊋ (a2) ⊋ (a3) ⊋ · · · ,
which violates the ACCP. Thus p contains an irreducible element, say p.
Since R is a UFD, p is prime, so (p) is a prime ideal. Since p has height one,
and (p) ⊆ p, we must have (p) = p, so p is principal. □

In a UFD, every height-1 prime ideal is principal, reflecting the fact that
codimension-1 subvarieties are cut out by a single equation. This is a special
case of Krull’s Hauptidealsatz, which asserts more generally that any minimal
prime over a principal ideal has height at most 1.

Theorem 1.2 (Krull’s Hauptidealsatz). Let R be a Noetherian ring and let
x ∈ R. Then every minimal prime ideal p over the principal ideal (x) has
height at most 1; that is,

ht(p) ≤ 1.

This implies that every nonzero element in a Noetherian domain is contained
in a prime ideal of height 1.
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Proposition 1.3 (Exercise 2.10). If R is a Noetherian ring, and every prime
ideal of height 1 in R is principal, then R is a UFD.

Proof. Since R is Noetherian, R satisfies the ACCP. Thus, we just need to
show that every irreducible element a is prime. Let a be irreducible; then
by Krull’s Hauptidealsatz, a is contained in a prime ideal p of height 1. By
our assumptions, p must be principal. Since a is irreducible, we must have
p = (a), and since p is prime, a must be prime. Hence R is a UFD. □

The proposition shows that local structure can determine global properties
like unique factorization. To move from the height of a prime to its local
properties, we use localization, which captures the geometry only at that
specific prime, turning it into the unique maximal ideal.

2. Localization

Localization is the fundamental tool that allows us to algebraically “zoom in”
on a prime ideal p and its surrounding neighborhood to study its isolated,
local properties.
The following exposition is motivated and influenced by [Con25].
Let R be a commutative ring. By a multiplicative set S ⊂ R, we mean a
subset such that

(i) 1 ∈ S; and
(ii) s, t ∈ S ⇒ st ∈ S.

The localization S−1R is the ring that is initial in the category of homomor-
phisms f : R → R′ such that f(s) is a unit for all s ∈ S; we will provide a
construction for this object soon.
Note that we allow 0 ∈ S in the definition of a multiplicative set. However,
in this case S−1R is the zero ring (see Theorem 2.4 later on). Happily, this
is the only case where S−1R is the zero ring, i.e. when 0 ̸∈ S, S−1R is
nontrivial.
The main point of localizing is to understand the behavior of ideals “around”
some area, by killing everything else. For example, when S = R \ p, for a
prime ideal p, the localization Rp = S−1R lets us investigate the behavior
of R “at p”. This idea is fundamental to understanding the geometric per-
spective of height and Krull dimension. This is also the reason for the name
“localization”: we are using it to study the local behavior of the ring.
In the special case where R is a ring of functions on some space X, Y ⊂ X,
and S is the subset of functions which do not vanish on Y , then for a ∈ R and
s ∈ S, the quotient a/s represents a well-defined germ of a function near Y :
it defines a function on the neighborhood of Y where s is nonzero. Such germs
can be added and multiplied, and they form a ring whose algebraic structure
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reflects the behavior of functions on X in an infinitesimal neighborhood of
Y . This is precisely the localization.
When R is not an integral domain, R (and hence S) may have zero divisors.
However, this does not break the construction of S−1R, since we only require
that the elements of S are nonvanishing on Y . In particular, the elements of
S need not be globally invertible.
If S has zero-divisors, the homomorphism ℓ : R → S−1R will not be injective.
Indeed, if s ∈ S is a zero divisor, then as = 0 for some a. Hence, ℓ(a) =
a/1 = as/s = 0/s = 0. Due to this, the construction of S−1R is more subtle
than what may seem like very similar constructions, like the field of fractions
of an integral domain. The issue of zero-divisors motivates the construction
of S−1R, which is as follows:

S−1R = {(a, s) | a ∈ R, s ∈ S}/ ∼,

where (a1, s1) ∼ (a2, s2) if and only if there exists s ∈ S with

a1s2s = a2s1s ∈ R.

The homomorphism ℓ : R → S−1R will be defined by

ℓ(a) = (a, 1).

We use a/s to denote the equivalence class of (a, s) = ℓ(a)ℓ(s)−1. Of course,
we would like to have

(a, s) ∼ (at, st) for t ∈ S.

The usual definition of equality of fractions, a1/s1 = a2/s2 if a1s2 = a2s1,
would be adequate if no element of S were a zero divisor. The additional
factor of t in the definition above allows for the possibility that a1s2−a2s1 ̸=
0, but a1s2t− a2s1t = 0 for some t ∈ S.
Now we verify the details above.

Proposition 2.1 (Exercise 4.7). We have the following:

• The relation ∼ is an equivalence relation.

• The addition and multiplication operations

a

s
+

b

t
=

at+ bs

st

a

s
· b
t
=

ab

st

are well-defined.

• S−1R is a commutative ring and the function a 7→ a
1 defines a ring

homomorphism ℓ : R → S−1R.

• ℓ(s) is invertible for all s ∈ S.
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Proof. We start by showing that ∼ is an equivalence relation. Reflexivity
follows from tsa = tsa for all (a, s) and t ∈ S, so (a, s) ∼ (a, s). Symmetry is
evident from the definition. For transitivity, suppose (a1, s2) ∼ (a2, s2) and
(a2, s2) ∼ (a3, s3). Then ss2a1 = ss1a2 and ts3a2 = ts2a3 for s, t ∈ S, so

(sts2)s3a1 = sts1s3a2 = sts1s2a3 = (sts2)s1a3,

showing that (a1, s2) ∼ (a3, s3). Thus, ∼ is an equivalence relation.
To show that addition and multiplication are well-defined, suppose (a1, s2) ∼
(a2, s2). Then there is some s ∈ S such that ss2a1 = ss1a2. We have

a1
s1

+
b

t
=

a1t+ bs1
s1t

and
a2
s2

+
b

t
=

a2t+ bs2
s2t

.

Then,
ss2t(a1t+ bs1) = ss2ta1t+ ss2tbs1 = ss2t(a2t+ bs2),

and it follows that
a1t+ bs1

s1t
=

a2t+ bs2
s2t

.

Similarly, if (b1, t1) ∼ (b2, t2) then

a

s
+

b1
t1

=
a

s
+

b2
t2
,

which implies that that addition is well-defined. For multiplication, suppose
that (a1, s1) ∼ (a2, s2); then ss2a1 = ss1a2 for some s ∈ S. Then, sa1bs2t =
sa2bs1t, which implies that a1b

s1t
= a2b

s2t
. Similarly, b1

t1
= b2

t2
implies a

s ·
b1
t1

= a
s ·

b2
t2

,
so multiplication is well-defined.
Checking that S−1R is a commutative ring is simple; the ring axioms follow
in the same way as in the case for the field of fractions for a domain R.
Moreover, the map ℓ is a ring homomorphism since ℓ(1) = 1/1 = 1, and

ℓ(a) + ℓ(b) = a
1 + b

1

= a+b
1

= ℓ(a+ b),

ℓ(a)ℓ(b) = a
1 · b

1

= ab
1

= ℓ(ab)

Finally, for all s ∈ S, note that ℓ(s) · 1
s = s

s = 1, so ℓ(s) is a unit. □
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We can now prove the universal property for S−1R. Consider the category
of ring homomorphisms f : R → R′ such that f(s) is invertible in R′ for
every s ∈ S. The morphisms are given by commutative diagrams

R′ R′′

T

φ

f
g

Proposition 2.2 (Exercise 4.7). In this category, the map ℓ → S−1R is
initial.

Proof. The proof is very similar to that for the field of fractions. Indeed,
suppose we have a homomorphism j : R → R′ such that j(s) is invertible in
R′ for every s ∈ S. Then the map

ĵ : S−1R → R′

is in fact forced because we must have

ĵ(a/s) = ĵ(a/1)ĵ((s/1)−1)

= (ĵ ◦ ℓ(a))(ĵ ◦ ℓ(s))−1

= j(a)j(s)−1.

The function ĵ indeed exists, since j(s) is always invertible; and it is unique
since it is forced. The fact that ĵ is a homomorphism follows directly from
the fact that j is, so this proves the universal property. □

Having characterized S−1R by its universal property, we now turn to its
basic algebraic features. In particular, we verify that localization preserves
the absence of zero divisors.

Proposition 2.3 (Exercise 4.7). Suppose R is an integral domain. Then
S−1R is an integral domain.

Proof. For nonzero a/s, b/t ∈ S−1R, note that (a/s)(b/t) = (ab/st). Suppose
to the contrary that ab/st = 0 = 0/1. Then there is some u ∈ S such that
uab = u · 0 · st = 0. But this means that either u, a, or b is zero. But a/s,
b/t are nonzero, so a, b ̸= 0. So u = 0, so 0 ∈ S. But then ua · 1 = us · 0 = 0,
so a/s = 0/1 = 0, a contradiction. Hence, S−1R is an integral domain. □

Proposition 2.4 (Exercise 4.7). The localization S−1R is the zero ring if
and only if 0 ∈ S.

Proof. If S−1R is the zero-ring, then 1/1 = 0/1 = 0, so there is u ∈ S so
that u(1 · 1− 0 · 1) = 0, i.e. u = 0. Hence 0 ∈ S. Conversely, if 0 ∈ S, then
for any a/s ∈ S−1R, 0(a · 1 − 0 · s) = 0, so a/s = 0/1 = 0. Hence S−1R is
the zero-ring. □
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We can similarly define a notion of localization for modules.
Suppose M is a R-module and let S be a multiplicatively closed subset of R
as before. Define a relation ∼ on the set of pairs (m, s), where m ∈ M and
s ∈ S by

(m, s) ∼ (m′, s′) ⇐⇒ (∃t ∈ S), t(s′m− sm′) = 0,

similarly to above. Proving that ∼ is an equivalence relation is identical to
the proof for the localization for rings case; see above. Again, we denote by
m
s the equivalence class of (a, s), and define the addition operation on these
fractions by

m

s
+

n

t
=

tm+ sn

st
.

We can define a S−1R-module structure on S−1M as follows:
a

s
· m
t

=
am

st
,

for a/s ∈ S−1R and m/t ∈ S−1M .

Proposition 2.5 (Exercise 4.8). This defines a S−1R-module structure on
S−1M that is compatible with the R-module structure on M .

Proof. To check that this defines a S−1R-module structure, note that

a

s
·
(
m1

t1
+

m2

t2

)
=

a

s
· t2m1 + t1m2

t1t2

=
at2m1 + at1m2

st1t2

=
(st2)(am1) + (st1)(am2)

(st1)(st2)

=
am1

st1
+

am2

st2

=
a

s
· m1

t1
+

a

s
· m2

t2
,

(
a1
s1

+
a2
s2

)
· m
t

=

(
a1s2 + a2s1

s1s2

)
· m
t

=
a1s2m+ a2s1m

s1s2t

=
(s2t)(a1m) + (s1t)(a2m)

(s1t)(s2t)

=
a1m

s1t
+

a2m

s2t

=
a1
s1

· m
t
+

a2
s2

· m
t
,
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(
a1
s2

· a2
s2

)
· m
t

=
a1a2
s1s2

· m
t

=
a1a2m

s1s2t

=
a1
s1

· a2m
s2t

=
a1
s1

·
(
a2
s2

· m
t

)
,

and

1 · m
t

=
1

1
· m
t

=
1 ·m
1 · t

=
m

t
.

Furthermore, since
r

1
· m
1

=
rm

1
,

this is compatible with the R-module structure on M . □

The following result gives a correspondence between ideals of R disjoint from
S and ideals of S−1R; this resembles the correspondence between ideals of R
containing a given ideal I and ideals of R/I given by the third isomorphism
theorem.

Proposition 2.6 (Exercise 4.9). Let S be a multiplicative subset of a com-
mutative ring R. Let ℓ : R → S−1R be the natural homomorphism and J be
a proper ideal of S−1R. Let I be an ideal of R disjoint from S. Then

• Ie := S−1I is a proper ideal of S−1R.
• Jc := ℓ−1(J) is an ideal of R such that Jc ∩ S = ∅.
• We have (Jc)e = J and (Ie)c = {a ∈ R : (∃s ∈ S) sa ∈ I}.

Notation. The superscripts e and c stand for “extension” and “contraction”,
respectively.
Proof. Suppose that I is an ideal of R such that I ∩S = ∅. It is evident that
Ie = S−1I is an ideal of S−1R, since for any r

t ∈ S−1R,
r

t

a

s
=

ra

st
∈ S−1I.

Furthermore, note that if 1 ∈ S−1I, then 1 = a
s for some a ∈ I, so a = s ∈ S,

contradicting I ∩ S = ∅. So S−1I is a proper ideal of S−1R.
Next suppose ℓ : R → S−1R is the natural homomorphism, and J is a proper
ideal of S−1R. Let Jc = ℓ−1(J). If r ∈ R and a ∈ Jc, then since a ∈ J ,
ra ∈ J , so ra ∈ Jc. Thus, Jc is an ideal of R. Furthermore, if a ∈ Jc ∩ S,
then 1 = a/a ∈ J , contradicting that J is a proper ideal of S−1R. Hence,
Jc ∩ S = ∅.
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Now suppose a/s ∈ J . Then a ∈ J , so a ∈ Jc, so a/s ∈ S−1Jc = (Jc)e.
Conversely, if x ∈ (Jc)e, then x = a/s for some a ∈ Jc ⊆ J , so x ∈ J . This
shows that (Jc)e = J .
Finally, to show that (Ie)c = {a ∈ R : (∃s ∈ S) sa ∈ I}, note that Ie consists
of all fractions a/s, for a ∈ I. Then, a ∈ (Ie)c if and only if a = b/s for some
b ∈ I, s ∈ S, which is equivalent to saying sa ∈ I. □

Example 2.1 (Exercise 4.9). We need not have (Ie)c = I. Indeed, let

S = {1, x, x2, . . .}, R = C[x, y], and I = (xy).

Then, y ∈ (Ie)c since there exists s ∈ S such that sy ∈ I: just take s = x.
But y ̸∈ I, so I ̸= (Ie)c.

Localization is designed to discard algebraic information coming from el-
ements of S and to retain only what remains visible after those elements
are inverted. Since prime ideals are precisely the algebraic loci where ele-
ments vanish, it is natural to expect that prime ideals intersecting S should
disappear under localization, while those disjoint from S should survive un-
changed. The next proposition makes this precise.

Proposition 2.7 (Exercise 4.10). The assignment p 7→ S−1p gives an inclusion-
preserving bijection between the set of prime ideals of R disjoint from S and
the set of prime ideals of S−1R.

Proof. Suppose that p is a prime ideal of R disjoint from S. We claim that
pe = S−1p is prime in S−1R. To see this, suppose (a/s)(b/t) ∈ pe. Then
(ab/st) = (p/u) for some p ∈ p and u ∈ S. Then, abu = uap ∈ p, so either
u, a, or b is in p. But p is disjoint from S, so u ̸∈ p. So a or b is in p, so
(a/s) or (b/s) is in pe. Thus, pe is prime.
Now, suppose that q is a prime ideal of S−1R. We claim that qc is a prime
ideal of R, that is disjoint from S. To see this, suppose that ab = q for some
q ∈ qc. Then, ab = q in q, so either a or b is in q. Without loss of generality,
a ∈ q. Thus, a ∈ qc. It follows that qc is prime, and it is disjoint from S due
to the previous problem.
Thus, we have well-defined inclusion-preserving maps that send prime ideals
of R disjoint from S to prime ideals of S−1R, and vice-versa. We claim
that these maps are inverses. One direction follows since (qc)e = q. Now,
consider (pc)e = {a ∈ R : (∃s ∈ S) (sa ∈ p)} for a prime ideal disjoint from
S. Then if sa ∈ p, either s ∈ p or a ∈ p. The first case is impossible, so
a ∈ p. Thus, (pc)e = p. This completes the other direction. Thus, we have
an inclusion-preserving bijection between the set of prime ideals of R disjoint
from S. □

A particularly important case is localization at the complement of a prime
ideal. For a prime ideal p of R, if S = R \ p, we let Rp = S−1R be the
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localization of R at p. Note that S is multiplicatively closed, since if ab ∈ p
then either a or b is in p. We similarly define Mp to be S−1M , where M is
a R-module.
In this situation, all information away from the chosen prime is inverted,
and the resulting ring should capture only the algebraic structure “near”
that prime. The following corollary formalizes this idea: localization at p
collapses all geometric directions except those specializing to p, yielding a
local ring, i.e., a ring with only one maximal (prime) ideal, whose prime
ideals record exactly the chain of specializations inside p. In particular,
localization allows one to replace global dimension questions by local ones,
with

dimRp = ht(p).

Corollary 2.8 (Exercise 4.11). The ring Rp is local, and there is an inclusion-
preserving bijection between prime ideals of Rp and prime ideals of R con-
tained in p.

Proof. The map in Theorem 2.7 gives the desired bijection. Furthermore,
since it is inclusion-preserving, it follows that maximal ideals of Rp cor-
respond to prime ideals contained in p that are maximal with respect to
inclusion. But p is the only such ideal, so the only maximal ideal of Rp is
S−1p = pRp. □

A property P of a ring R (or an R-module M) is said to be local if R (or
M) has P if and only if Rp (or Mp) does, for every prime ideal p of M .
We give an example of a local property.

Proposition 2.9 (Exercise 4.12). Let M be a R-module. The following are
equivalent:

(1) M = 0;

(2) Mp = 0 for all prime ideals p of R;

(3) Mm = 0 for all maximal ideals m of R.

Proof. Clearly (1) ⇒ (2) ⇒ (3). To show (3) ⇒ (1), suppose to the contrary
that M ̸= 0 but Mm = 0 for all maximal ideals m of R. Let x be a non-zero
element of M . The annihilator a = Ann(x) is a proper ideal, so it is contained
in a maximal ideal m. Consider the element x/1 ∈ Mm. Since Mm = 0, it
follows that x/1 = 0, which means that bx = 0 for some b ∈ M \m, which is
impossible as b ̸∈ a. This establishes (3) ⇒ (1) and completes the proof. □

Furthermore, if φ : M → N is a homomorphism, then injectivity and surjec-
tivity of φ are local properties (see Proposition 3.9 in [AM69]).
Now, we investigate how unique factorization behaves under localization.
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Proposition 2.10 (Exercise 4.15). Let R be a UFD and S be a multiplica-
tively closed subset of R. Then S−1R is a UFD.

Proof. Let P be the set of all irreducibles in R dividing some element of S,
and Q be the set of all irreducibles in R not dividing some element of S.
We claim that every element of P is a unit in S−1R, and every element of
Q is irreducible in S−1R. Indeed, if p ∈ P , then pa = s ∈ S for some a, so
p · (a/s) = 1 in S−1R, implying that p is a unit. Now suppose q ∈ Q. If
q ·(a/s) = 1 for some a ∈ R, s ∈ S, then qa = s, so q divides an element of S,
which is impossible. Hence q is not a unit. Furthermore, if (a/s) · (b/t) = q
in S−1R, then qst = ab, so q | ab in R. Since R is a UFD, all irreducibles
are prime, so q | a or q | b. Consequently, either q | a/s or q | b/t in S−1R.
It follows that q is prime, hence irreducible, in S−1R.
Now, suppose that a/s is irreducible in S−1R. Consider the prime factor-
ization of a in R, which is unique up to associates in R. If there are no
primes from Q, then a/s is a product of units in S−1R, so it is a unit, a
contradiction. Otherwise, q | a for some q ∈ Q. Then, q | a/s in S−1R.
Since q and a/s are both irreducible, it follows that it is an associate of q.
Now, we prove that S−1R is a UFD. Pick some arbitrary a/s; let

a = u(pe11 pe22 · · · pekk )(qe11 · · · qeℓℓ )

be the prime factorization of a in R, where u is a unit in R, pi ∈ P and
qi ∈ Q. Then

a

s
=

u

s
(pe11 pe22 · · · pekk )(qe11 · · · qeℓℓ ).

From above, u
s (p

e1
1 pe22 · · · pekk ) is a unit in S−1R, and each term in the product

qe11 · · · qeℓℓ is irreducible. Hence, this is gives an irreducible factorization of
a
s . Now, suppose we have two irreducible factorizations

a

s
=

a1
s1

· · · ak
sk

=
b1
t1

· · · bℓ
tℓ
.

Then, each ai is the associate of some qi ∈ Q, and each bI is the associate
of some ri ∈ Q. Hence, q1 · · · qk and r1 · · · rℓ are associates in S−1R. Since
no unit is divisible by an irreducible element, it follows from above that all
units have the form a

s , where a is a product of primes in P . In particular, it
follows that

r1 · · · rℓ =
a

s
(q1 · · · qk),

so
sr1 · · · rℓ = aq1 · · · qk.

Since R is a UFD, the prime factorizations of the left-hand side and right-
hand side must match, up to associates. However, s and a are not divisible by
any primes in P , so it follows that q1, . . . , qk and r1 · · · rℓ can be rearranged
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so that qi and ri are associates. It follows that the two factorizations of a
s

match up to associates. Hence, unique factorization holds. □

Proposition 2.11. Suppose R is a Noetherian integral domain, and s ∈
R be a nonzero prime. Consider the multiplicatively closed subset S =
{1, s, s2, . . . }. Then R is a UFD if and only if S−1R is a UFD.

Proof. One direction follows from Theorem 2.10. Now, suppose S−1R is a
UFD. Since R is Noetherian, by Theorem 1.3, it suffices to prove that every
prime ideal of height 1 in R is principal. Let p be such a prime ideal. If
sk ∈ p, for some k, then since sk is a product of k copies of s, s ∈ p. Hence,
(s) ⊆ p. Since s is prime, (s) is prime, and since p has height one, p = (s),
so p is principal. Now suppose p is disjoint from S. Then, by Theorem 2.7,
pe is a prime ideal of height one in S−1R, and since S−1R is a UFD, by
Theorem 1.1, pe = (a) is principal. Write a = b/s, with b ∈ I. Then pe = (b)
as well. For x ∈ (pe)c, note that x ∈ pe, so x = sbk for some s ∈ S. Since p
is prime, s ∈ p or bk ∈ p. But the first case is impossible, so bk ∈ p. Hence,
x ∈ (b). Thus, p = (b) is principal. It follows that R is a UFD, and hence R
is a UFD if and only if S−1R is. □

Unfortunately, being a UFD is not a local property. There exist rings R such
that Rp is a UFD for all prime ideals p, but R is not a UFD. Such rings are
called locally factorial.

3. Krull Dimension

Definition 3.1. The Krull dimension (or simply dimension) of a ring R is
the supremum of the lengths of chains of prime ideals in R. Equivalently, it
is the supremum of the heights of prime ideals of R.

We denote the Krull dimension of R by dimR. Some technicalities: we
do not count the whole ring as a prime ideal, and we say that a chain
p0 ⊊ p1 ⊊ · · · ⊊ pr has length r. Krull dimension represents the “topological
dimension” of Spec(R).
For an ideal I of R, we define the dimension dim I to be the dimension of
R/I. Additionally, by Theorem 2.8, ht p = dimRp for a prime ideal p.
From the geometric point of view, the Krull dimension of the coordinate ring
of an affine variety coincides with the geometric dimension of that variety—at
least in the reduced, irreducible cases.

3.1. The Geometric Perspective. We now make precise the geometric
perspective on Krull dimension. This was mentioned briefly in Example
III.4.14 in [Alu09], and now we will make everything fully rigorous.
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We start by reviewing the correspondence between ideals and zero sets, which
is discussed in more detail in §VII.2.3 of [Alu09]. Throughout this discus-
sion, let k be an algebraically closed field.
Given an ideal I ⊂ k[x1, . . . , xn], define its zero set

V (I) = {a ∈ kn | f(a) = 0 for all f ∈ I}.
Such sets are called algebraic sets.
Conversely, given a subset X ⊂ kn, define its vanishing ideal

I(X) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ X}.

The assignments I 7→ V (I) and X 7→ I(X) reverse inclusions: if I ⊂ J , then
V (J) ⊂ V (I). Thus larger ideals correspond to smaller geometric sets.
The fundamental link between algebra and geometry is provided by Hilbert’s
Nullstellensatz.

Theorem 3.1 (Hilbert’s Nullstellensatz, informal form). For any ideal I ⊂
k[x1, . . . , xn],

I(V (I)) =
√
I.

Here the radical ideal
√
I is defined by

√
I = {x ∈ k[x1, . . . , xn] : x

m ∈ I for some m ≥ 1}.

In particular, radical ideals correspond bijectively to algebraic subsets of kn.
Moreover:

• prime ideals correspond to irreducible algebraic sets;
• maximal ideals correspond to points.

This dictionary allows us to interpret chains of prime ideals as chains of
irreducible geometric specializations.
The correspondence between ideals and zero sets naturally equips kn with a
topology.

Definition 3.2. The Zariski topology on kn is defined by declaring the closed
sets to be the algebraic sets V (I) for ideals I ⊂ k[x1, . . . , xn].

This topology is very coarse:

• every nonempty open set is dense;
• points are closed, but finite sets need not be open;
• irreducible closed sets play the role of connected components.

Irreducibility has a precise algebraic meaning.

Proposition 3.2. An algebraic set X = V (I) is irreducible if and only if I
is a prime ideal.
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This is not too hard to check using the basic properties of the ideal-variety
correspondence.
Thus prime ideals are the basic building blocks of algebraic geometry. Chains
of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pr

correspond to chains of irreducible closed subsets

Xr ⊊ Xr−1 ⊊ · · · ⊊ X0,

and Krull dimension measures the maximum possible length of such chains.
From this perspective, Krull dimension is intrinsic to the Zariski topology:
it counts how many times one can pass to a strictly smaller irreducible closed
subset.

3.2. Affine Varieties and Coordinate Rings. Let k be an algebraically
closed field. An affine algebraic variety is a subset

X ⊂ kn

of the form

X = V (I) = {a ∈ kn | f(a) = 0 for all f ∈ I},

for some ideal I ⊂ k[x1, . . . , xn].

Definition 3.3. The coordinate ring of an affine variety X is

k[X] := k[x1, . . . , xn]/I(X),

where
I(X) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈ X}

is the ideal of all polynomials vanishing on X.

By Hilbert’s Nullstellensatz, I(X) is a radical ideal, and every finitely gen-
erated reduced k-algebra arises (up to isomorphism) as the coordinate ring
of an affine variety.
The algebraic structure of k[X] encodes the geometry of X:

• maximal ideals of k[X] correspond to points of X;
• prime ideals correspond to irreducible subvarieties of X;
• inclusions of prime ideals correspond to specializations of subvarieties.

Thus chains of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pr

correspond to chains of irreducible subvarieties

Xr ⊊ Xr−1 ⊊ · · · ⊊ X0.
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Definition 3.4. The dimension of an affine variety X is defined to be

dimX := dim k[X].

This definition recovers familiar geometric cases:

• finite sets of points have coordinate rings of dimension 0;
• irreducible affine curves have coordinate rings of dimension 1;
• irreducible affine surfaces have coordinate rings of dimension 2.

In the context of geometry, localizing at a prime ideal p (denoted Rp) is akin
to using a microscope to look only at the behavior of functions near the point
p. Geometrically, Rp corresponds to looking at the variety defined by R in
an infinitesimal neighborhood of the subvariety defined by p.

3.3. Examples of Krull Dimension. One of the most basic results about
Krull dimension is the following.

Theorem 3.3. We have

dim k[x1, . . . , xr] = r.

More generally, if R is Noetherian, dimR[x] = 1 + dimR.

Intuitively, this makes sense: the chain of ideals

(x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xr).

In fact, we can say more.
An affine domain over k is the coordinate ring R = k[x1, · · · , xn]/I(X) of
an irreducible affine algebraic variety X. Equivalently, it is the quotient of
k[x1, . . . , xn] by a prime ideal.
For a field extension k ⊆ K, the transcendence degree trdegk(K) of K is
the size of a maximal algebraically independent subset of K (over k). It
turns out that all such subsets have the same size, so this notion is well-
defined. Intuitively, the transcendence degree measures how many variables
we need add to obtain K from k. For a k-algebra R, the transcendence
degree trdegk(R) is the transcendence degree of the field of fractions of R.
When R = k[x1, . . . , xr], the transcendence degree is easily seen to be r:
{x1, . . . , xr} is a maximal algebraically independent set in the field of frac-
tions of R (which is just rational functions in x1, . . . , xr). So Theorem 3.3
says that the Krull dimension matches the transcendence degree. This can
be generalized.

Theorem 3.4. If R is an affine domain, then dimR = trdegk(R). Fur-
thermore, this is the common length of all maximal chains of prime ideals in
R.
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This is a very powerful result which lays down the connection between the
algebraic and geometric notions of dimension. A proof of this result is given
in [Eis95].
The second part of this theorem has a very nice consequence. Suppose p
is a prime ideal of R. There is a maximal chain of prime ideals of R/p
of length dim p. Prime ideals of R/p correspond to prime ideals of R that
contain p, so we may convert this into a chain of prime ideals starting from p.
Furthermore, by adjoining this with a maximal chain of prime ideals ending
at p, we get a maximal chain of prime ideals, which has length ht p+ dim p.
But since all maximal chains of prime ideals have length dimR, it follows
that

dimR = ht p+ dim p.(3.1)

Hence, in this case the height equals the codimension dimR− dim p.

Example 3.1 (Dimension 0). A ring has Krull dimension 0 if and only if
all its prime ideals are maximal. Such rings are precisely the Artinian rings.
Let R = k[x]/(f(x)), where f is squarefree and splits over k. Writing f(x) =
(x− a1) · · · (x− an), note that

R =
k[x]

(x− a1)(x− a2) · · · (x− an)
.

It is straightforward to check that the maximal ideals (x− a1), . . . , (x− an)
satisfy the conditions of the Chinese Remainder Theorem (Theorem V.6.1
in [Alu09]), from which it follows that

R ∼=
k[x]

(x− a1)
× · · · × k[x]

(x− an)
∼= k × · · · × k

Additionally, Spec(R) consists of finitely many points: the ideals (x−ai) for
i = 1, . . . , n. Every prime is maximal, and dimR = 0 (which also follows
from the fact that k × · · · × k has transcendence degree 0).
This matches geometric intuition perfectly, since a finite collection of points
should have dimension zero.

Example 3.2 (Dimension 1). Consider R = k[x]. We have

(0) ⊂ (x− a)

as the longest possible chain, so dimR = 1. This corresponds to the affine
line, as noted in Example III.4.14 in [Alu09].
More interestingly, let

R = k[x, y]/(y2 − x3).
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Figure 1. The variety V (y2 − x3) has a cusp

This is the coordinate ring of a cusp, as seen in Figure 1.
The ring is an integral domain, and every maximal ideal corresponds to a
point on the curve. Here, there is only one independent parameter, so the
transcendence degree is 1. Hence, dimR = 1, even though the curve has a
singularity.

Example 3.3 (Dimension 2). The ring k[x, y] has dimension 2, reflecting
the two independent parameters x and y. More generally, if

R = k[x, y, z]/(f)

with f irreducible, then R is the coordinate ring of an irreducible surface in
A3, and dimR = 2.
Chains of primes correspond to surface → curve → point; this formalizes the
intuition from the beginning of the chapter.

Example 3.4 (Embedded components; [Eis95], Chapter 9, p.228). Con-
sider the ring

R = k[x, y, z]/(xy, xz).

This is NOT an affine domain, since (xy, xz) is not a prime ideal, so we
cannot use Theorem 3.4 to compute the dimension. Instead, we note that
the dimension of R is the maximum of the dimensions of the quotients of
R by the minimal ideals, which follows from the definitions. The minimal
prime ideals in this ring are (x) and (y, z), and since R/(x) ∼= k[y, z] has
dimension 2, and R/(y, z) ∼= k[x] has dimension 1, it follows that dimR = 2.
We can also see this geometrically. Note that R is the coordinate ring for
the space defined by xy = 0 and xz = 0. It is not hard to see R as the union
of the plane

M = {(x, y, z) : x = 0}
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Figure 2. The algebraic variety V (xy, xz)

and the line
N = {(x, y, z) : y = z = 0}.

The fact that dimR = 2 corresponds to the observation that the largest
component (the plane) has degree 2.
The maximal ideal I = (x− 1, y, z) corresponds to the point P = (1, 0, 0) ∈
k3, which is on L. The dimension of the ideal I is dimR/I = 0, since I
is maximal. However, the height of I is only 1, since the only prime ideal
contained in I is (y, z). Hence, the formula (3.1) breaks down. This is an
illustration of the fact that height is a local notion: it only depends on the
behavior of R around I. This can also be seen visually: while the dimension
of R is 2, around the point (1, 0, 0), R looks like a line, with dimension 1.

Example 3.5 (Nonreduced points). Consider the ring

R = k[x]/(x2).

The ideal (x2) is not radical, and hence this is not the coordinate ring of
any algebraic variety (since x2 vanishes if and only if x does). This ring
has only one prime ideal (x), which is maximal. Indeed, since x · x = 0,
any prime ideal must contain x. Hence, the Krull dimension of this ring
is 0, since there cannot be any nontrivial chains of prime ideals. This may
seem surprising, since the variable x “looks” like an additional variable. This
illustrates that Krull dimension is insensitive to nilpotent elements. From
the geometric perspective, Spec(R) is the single point (x), equipped with
additional “infinitesimal” structure coming from the nilpotent element x.
However, the dimension is still 0.
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