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Abstract. In this expository paper, we discuss the basics of Lagrangian and Hamiltonian
dynamics. We derive the Euler-Lagrange equations fro D’Alembert’s principle, show that
they are equivalent to Hamilton’s principle of least actions, and finally use them to derive
Hamilton’s equations. We also provide some examples to illustrate the use of Lagrangian
and Hamiltonian dynamics.

1. Holonomic constraints and degrees of freedom

Consider a system of N particles in three dimensional space, each with position vector ri(t)
for i = 1, . . . , N . Note that each ri(t) ∈ R3 is a 3-vector. We thus need 3N coordinates
to specify the system, this is the configuration space. Newton’s 2nd law tells us that the
equation of motion for the i-th particle is

ṗi = F ext
i + F con

i ,

for i = 1, . . . , N . Here pi = mivi is the linear momentum of the i-th particle and vi = ṙi is
its velocity. We decompose the total force on the i-th particle into an external force F ext

i and
a constraint force F con

i . By external forces we imagine forces due to gravitational attraction
or an electro-magnetic field, and so forth.
By a constraint on a particles we imagine that the particle’s motion is limited in some rigid
way. For example the particle/bead may be constrained to move along a wire or its motion
is constrained to a given surface. If the system of N particles constitute a rigid body, then
the distances between all the particles are rigidly fixed and we have the constraint

|ri(t)− rj(t)| = cij,

for some constants cij, for all i, j = 1, . . . , N . All of these are examples of holonomic
constraints.

Definition (Holonomic constraints). For a system of particles with positions given by
ri(t) for i = 1, . . . , N , constraints that can be expressed in the form

g(r1, . . . , rN , t) = 0,

are said to be holonomic. Note they only involve the configuration coordinates.

We will only consider systems for which the constraints are holonomic. Systems with con-
straints that are non-holonomic are: gas molecules in a container (the constraint is only
expressible as an inequality); or a sphere rolling on a rough surface without slipping (the
constraint condition is one of matched velocities).
Let us suppose that for the N particles there are m holonomic constraints given by

gk(r1, . . . , rN , t) = 0,

for k = 1, . . . ,m. The positions ri(t) of all N particles are determined by 3N coordinates.
However due to the constraints, the positions ri(t) are not all independent. In principle, we
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can use the m holonomic constraints to eliminate m of the 3N coordinates and we would be
left with 3N −m independent coordinates, i.e. the dimension of the configuration space is
actually 3N −m.

Example (Two particles connected by a light rod). Suppose two particles can move
freely in three-dimensional space, their position vectors at any time given by the vectors
r1 = r1(t) and r2 = r2(t), each with three components. Hence 6 pieces of information,
the three components for each vector are required to specify the state of the system at any
time t. The dimension of the configuration space is 6. Now suppose the two particles are
connected by a light rigid rod of length ℓ. Thus for this system the vectors r1 = r1(t) and
r2 = r2(t) are restricted so that at any time t the constraint/condition

|r1(t)− r2(t)| = ℓ

is satisfied. This constraint equation represents a single relation between the 6 configuration
variables. In principle we can solve for any one of the configuration variables in terms of the
other 5 configuration variables. Hence the system is constrained to evolve on a 5-dimensional
submanifold of the 6-dimensional configuration space. The dimension of the configuration
space is 5.

Definition (Degrees of freedom). The dimension of the configuration space is called the
number of degrees of freedom.

Thus we can transform from the ‘old’ coordinates r1, . . . , rN to new generalized coordinates
q1, . . . , qn where n = 3N −m:

r1 = r1(q1, . . . , qn, t)

...

rN = rN(q1, . . . , qn, t)

2. D’Alembert’s Principle

We will restrict ourselves to systems for which the net work of the constraint forces is zero,
i.e. we suppose

N∑
i=1

F con
i · dri = 0,

for every small change dri of the configuration of the system (for t fixed). Recall that the
work done by a particle is given by the force acting on the particle times the distance travelled
in the direction of the force. So here for the i-th particle, the constraint force applied is F con

i

and suppose it undergoes a small displacement given by the vector dri. Since the dot product
of two vectors gives the projection of one vector in the direction of the other, the dot product
F con

i · dri gives the work done by F con
i in the direction of the displacement dri.

If we combine the assumption that the net work of the constraint forces is zero with Newton’s
2nd law

ṗi = F ext
i + F con

i ,
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from the last section, we find

N∑
i=1

ṗi · dri =
N∑
i=1

(
F ext

i + F con
i

)
· dri

⇔
N∑
i=1

ṗi · dri =
N∑
i=1

F ext
i · dri +

N∑
i=1

F con
i · dri

⇔
N∑
i=1

ṗi · dri =
N∑
i=1

F ext
i · dri.

In other words we have
N∑
i=1

(
ṗi − F ext

i

)
· dri = 0,

for every small change dri. This represents D’Alembert’s principle. Note in particular that
no forces of constraint are present.

Remark 1. The assumption that the constraint force does no net work is quite general. It is
true in particular for holonomic constraints. For example, for the case of a rigid body, the
internal forces of constraint do no work as the distances |ri − rj| between particles is fixed,
then d(ri − rj) is perpendicular to ri − rj and hence perpendicular to the force between
them which is parallel to ri − rj. Similarly for the case of the bead on a wire or particle
constrained to move on a surface — the normal reaction forces are perpendicular to dri.

This leads to Lagrange’s equations of motion. Consider the transformation to generalized
coordinates

ri = ri(q1, . . . , qn, t),

for i = 1, . . . , N . If we consider a small increment in the displacements dri then the corre-
sponding increment in the work done by the external forces is

N∑
i=1

F ext
i · dri =

N,n∑
i,j=1

F ext
i · ∂ri

∂qj
dqj =

n∑
j=1

Qj dqj.

Here we have used the chain rule

dri =
n∑

j=1

∂ri

∂qj
dqj,

and we set for j = 1, . . . , n,

Qj =
N∑
i=1

F ext
i · ∂ri

∂qj
.

We think of the Qj as generalized forces. We now assume the work done by these forces
depends on the initial and final configurations only and not on the path between them. In
other words we assume there exists a potential function V = V (q1, . . . , qn) such that

Qj = −∂V

∂qj
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for j = 1, . . . , n. Such forces are said to be conservative. We define the total kinetic energy
to be

T :=
N∑
i=1

1
2
mi |vi|2 ,

and the Lagrange function or Lagrangian to be

L := T − V.

Theorem 2 (Lagrange’s equations). D’Alembert’s principle, under the assumption the
constraints are holonomic, is equivalent to the system of ordinary differential equations

d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= 0,

for j = 1, . . . , n. These are known as Lagrange’s equations of motion.

Proof. The change in kinetic energy mediated through the momentum — the first term in
D’Alembert’s principle — due to the increment in the displacements dri is given by

N∑
i=1

ṗi · dri =
N∑
i=1

miv̇i · dri =

N,n∑
i,j=1

miv̇i ·
∂ri

∂qj
dqj.

From the product rule we know that

d

dt

(
vi ·

∂ri

∂qj

)
≡ v̇i ·

∂ri

∂qj
+ vi ·

d

dt

(
∂ri

∂qj

)
≡ v̇i ·

∂ri

∂qj
+ vi ·

∂vi

∂qj
.

Also, by differentiating the transformation to generalized coordinates we see

vi ≡
n∑

j=1

∂ri

∂qj
q̇j and

∂vi

∂q̇j
≡ ∂ri

∂qj
.

Using these last two identities we see that

N∑
i=1

ṗi · dri =
n∑

j=1

(
N∑
i=1

miv̇i ·
∂ri

∂qj

)
dqj

=
n∑

j=1

(
N∑
i=1

(
d

dt

(
mivi ·

∂ri

∂qj

)
−mivi ·

∂vi

∂qj

))
dqj

=
n∑

j=1

(
N∑
i=1

(
d

dt

(
mivi ·

∂vi

∂q̇j

)
−mivi ·

∂vi

∂qj

))
dqj

=
n∑

j=1

(
d

dt

(
∂

∂q̇j

(
N∑
i=1

1
2
mi |vi|2

))
− ∂

∂qj

(
N∑
i=1

1
2
mi |vi|2

))
dqj.

Hence we see that D’Alembert’s principle is equivalent to
n∑

j=1

(
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
−Qj

)
dqj = 0.
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Since the qj for j = 1, . . . , n, where n = 3N −m, are all independent, we have

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
−Qj = 0,

for j = 1, . . . , n. Using the definition for the generalized forces Qj in terms of the potential
function V gives the result. □

Remark 3 (Configuration space). As already noted, the n-dimensional subsurface of 3N -
dimensional space on which the solutions to Lagrange’s equations lie is called the configura-
tion space. It is parameterized by the n generalized coordinates q1, . . . , qn.

Example (Simple harmonic motion). Consider a particle of mass m moving in a one
dimensional Hookeian force field −kx, where k is a constant. The potential function V =
V (x) corresponding to this force field satisfies

−∂V

∂x
= −kx

⇔ V (x)− V (0) =

∫ x

0

kξ dξ

⇔ V (x) = 1
2
x2.

The Lagrangian L = T − V is thus given by

L(x, ẋ) = 1
2
mẋ2 − 1

2
kx2.

From Hamilton’s principle the equations of motion are given by Lagrange’s equations. Here,
taking the generalized coordinate to be q = x, the single Lagrange equation is

d

dt

(
∂L
∂ẋ

)
− ∂L

∂x
= 0.

Using the form for the Lagrangian above we find that

∂L
∂x

= −kx and
∂L
∂ẋ

= mẋ,

and so Lagrange’s equation of motion becomes

mẍ+ kx = 0.

3. Hamilton’s Principle

We consider mechanical systems with holonomic constraints and all other forces conservative.
Recall, we define the Lagrange function or Lagrangian to be

L = T − V,

where

T =
N∑
i=1

1
2
mi |vi|2

is the total kinetic energy for the system, and V is its potential energy.
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Definition (Action). If the Lagrangian L is the difference of the kinetic and potential
energies for a system, i.e. L = T − V , we define the action S = S(q) from time t1 to t2,
where q = (q1, . . . , qn)

T, to be the functional

S(q) :=

∫ t2

t1

L(q, q̇, t)dt.

Hamilton [1834] realized that Lagrange’s equations of motion were equivalent to a variational
principle.

Theorem 4 (Hamilton’s principle of least action). The correct path of motion of a
mechanical system with holonomic constraints and conservative external forces, from time
t1 to t2, is a stationary solution of the action. Indeed, the correct path of motion q = q(t),
with q = (q1, . . . , qn)

T, necessarily and sufficiently satisfies Lagrange’s equations of motion
for j = 1, . . . , n:

d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= 0.

It is Hamilton’s form of the principle of least action “because in many cases the action of
q = q(t) is not only an extremal but also a minimum value of the action functional”.

Proof. Suppose the boundary conditions are q(a) = A and q(b) = B. the principle of least
action states that the action S is extremized at q, so the functional∫ b

a

L(q, q̇, t) dt

is extremized. In our proof, we assume that L is twice continuously differentiable, although
the result is still true with a weaker assumption. Let q̃ = q + εη be a perturbation of q,
where ε is a small positive number and η is differentiable and η(a) = η(b) = 0. Then we
have

L
(
q̃,

dq̃

dt
, t

)
= L(q, q̇, t) + ε

(
η1

∂L
∂q1

+ · · ·+ ηn

∂L
∂qn

+ η̇1

∂L
∂q̇1

+ · · ·+ η̇n

∂L
∂q̇n

)
+O(ε2),

where ηi(t) denotes the i’th coordinate of η(t). Then, we have

S(q̃)− S(q) = ε

[∫ b

a

η1

∂L
∂q1

+ · · ·+ ηn

∂L
∂qn

+ η̇1

∂L
∂q̇1

+ · · ·+ η̇n

∂L
∂q̇n

dt

]
+O(ε2).

The first term is the first variant of the action, denoted by δS. Then the the principle of
least action states that δS = 0, so∫ b

a

η1

∂L
∂q1

+ · · ·+ ηn

∂L
∂qn

+ η̇1

∂L
∂q̇1

+ · · ·+ η̇n

∂L
∂q̇n

dt = 0.

Then the components ηi

∂L
∂qi

+ η̇i

∂L
∂q̇n

are independent are independent for different i, so we

have ∫ b

a

ηi

∂L
∂qi

+ η̇i

∂L
∂q̇i

dt = 0.
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Then, let u =
∂L
∂q̇i

, v = ηi. Then

du =
d

dt

∂L
∂q̇i

dt and dv = η̇i dt.

Then integration by parts gives∫ b

a

η̇i

∂L
∂q̇i

dt =

[
ηi

∂L
∂q̇i

]b
a

−
∫ b

a

ηi

d

dt

∂L
∂q̇i

dt.

Now since η(a) = η(b) = 0, so the first term is zero. Then,∫ b

a

η̇i

∂L
∂q̇i

dt = −
∫ b

a

ηi

d

dt

∂L
∂q̇i

dt.

Putting this into our original expression gives∫ b

a

ηi

∂L
∂qi

− ηi

d

dt

∂L
∂q̇i

dt = 0.

For this to be true for all η, we must have

∂L
∂qi

− d

dt

∂L
∂q̇i

= 0

for all i = 1, . . . , n, which are the Euler-Lagrange equations. Reversing the steps above
shows that the Euler-Lagrange equations imply that the action S is extrimized on the correct
path. □

We define the generalized momentum p = (p1, . . . , pn) by

pi =
∂L
∂q̇i

.

We define the Hamiltonian by

H = p · q̇ − L.
The Euler Lagrange equations can be written as

dpi

dt
=

∂L
∂qi

and

pi =
∂L
∂q̇i

.

Then, we can write these equations in terms of the Hamiltonian as follows:

dpi

dt
= −∂H

∂qi

and
dqi
dt

=
∂H
∂pi

.

These are known as Hamilton’s Equations.
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Example (Simple harmonic oscillator). The Lagrangian for the simple harmonic oscil-
lator, which consists of a mass m moving in a quadratic potential field with characteristic
coefficient k, is

L(x, ẋ) = 1
2
mẋ2 − 1

2
kx2.

The corresponding generalized momentum is

p =
∂L
∂ẋ

= mẋ

which is the usual momentum. This implies ẋ = p/m and so the Hamiltonian is given by

H(x, p) = ẋp− L(x, ẋ)

=
p

m
p−

(
1
2
mẋ2 − 1

2
kx2
)

=
p2

m
−
(

1
2
m
( p

m

)2
− 1

2
kx2

)
=

1

2

p2

m
+

1

2
kx2.

Note this last expression is the sum of the kinetic and potential energies and so H is the
total energy. Hamilton’s equations of motion are thus given by

ẋ = ∂H/∂p,

ṗ = −∂H/∂x
⇔

ẋ = p/m,

ṗ = −kx.

Combining these two equations, we get the usual equation for a harmonic oscillator:

mẍ = −kx.
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