

Modular Curves as Moduli Spaces

Math 285M Final Presentation

December 17, 2025

Outline

- 1 Recap of Modular Curves
- 2 Modular Curves as Moduli Spaces
- 3 Some Applications

The Modular Group and the Upper Half-Plane

- The Upper Half-Plane (\mathbb{H}): $\{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. A model of hyperbolic geometry.
- The Modular Group $SL_2(\mathbb{Z})$: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $a, b, c, d \in \mathbb{Z}$ and $ad - bc = 1$.
- Action: The group acts on \mathbb{H} by fractional linear transformations:
$$z \mapsto \frac{az+b}{cz+d}.$$
- Fundamental Domain: A region in \mathbb{H} that contains exactly one representative from each orbit.
- Extended upper half-plane $\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q}\mathbb{P}^1$ adds a line at infinity. This will “compactify” the modular curve.

Congruence Subgroups

- $\Gamma_0(N)$: Matrices

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $c \equiv 0 \pmod{N}$.

- $\Gamma_1(N)$: Matrices with $a, d \equiv 1 \pmod{N}$ and $c \equiv 0 \pmod{N}$.

Modular Curves

We have [modular curves](#)

$$X(N) = \mathbb{H}^* / \Gamma(N), \quad X_0(N) = \mathbb{H}^* / \Gamma_0(N), \quad X_1(N) = \mathbb{H}^* / \Gamma_1(N).$$

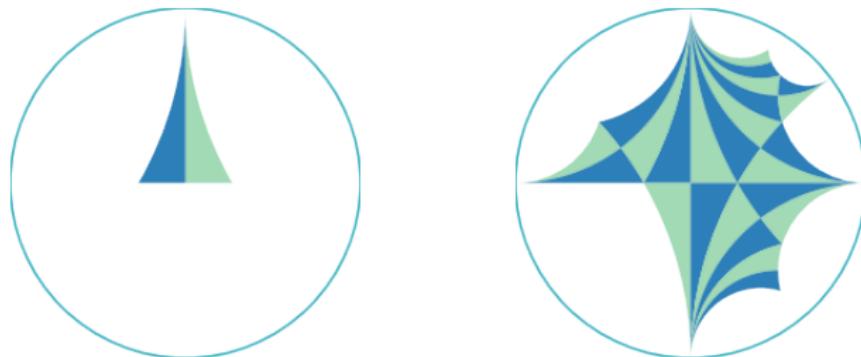
Visualize as fundamental domains.



For $\Gamma = SL_2(\mathbb{Z})$, the modular curve is topologically equivalent to a sphere.

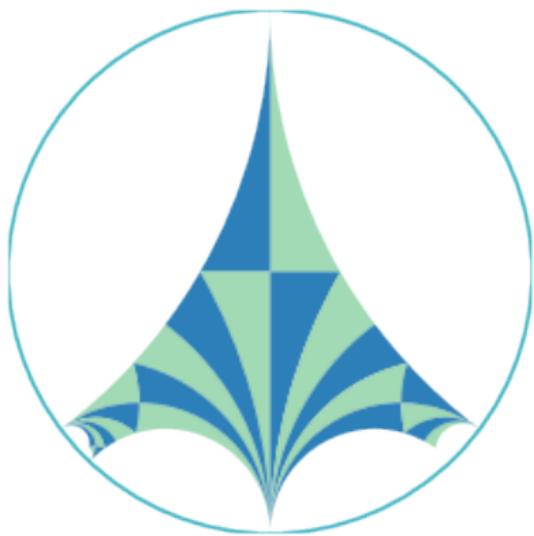
Visualizing Modular Curves

In the Poincaré disk, the fundamental domains for $SL_2(\mathbb{Z})$ and $\Gamma_0(11)$ are:



The modular curve $X_0(11)$ has genus 1.

More Fundamental Domains

(a) $X_1(5)$ (b) $X_1(11)$

History of Modular Curves as Moduli Spaces

- The study of modular curves has roots in the 19th century (Gauss, Dedekind, Klein, Poincaré).
- Hecke, Siegel, and Shimura connected modular curves to the arithmetic of elliptic curves.
- The modern perspective, viewing modular curves as moduli spaces, was crystallized in Grothendieck's school in the 1960s.

Moduli Spaces

Definition (Rough)

A **moduli space** is a geometric space whose points represent (isomorphism classes of) algebro-geometric objects of some fixed kind.

- $\mathbb{R}_{>0}$ is a moduli space for the problem of classifying circles in \mathbb{R}^2 up to congruence.
- \mathbb{RP}^1 is the moduli space for lines in \mathbb{R}^2 passing through the origin.
- \mathbb{RP}^2 is the moduli space for lines in \mathbb{R}^3 passing through the origin.

Why Moduli Spaces?

Moduli Spaces \iff “solution spaces”

Example

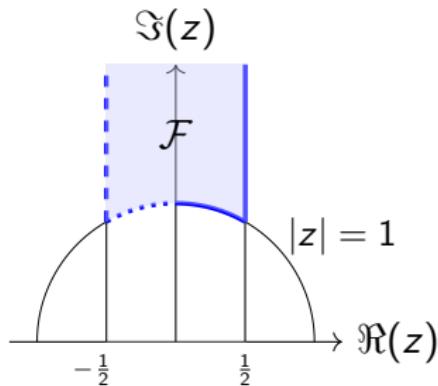
Circles in \mathbb{R}^2 inherit a notion of closeness from the moduli space $\mathbb{R}_{>0}$.

Modular Curves as Moduli Spaces

Theorem (Uniformization)

Each point $\tau \in \mathbb{H}$ gives an elliptic curve $E_\tau \cong \mathbb{C}/\Lambda_\tau$ and this classifies all elliptic curves.

$Y(1) = \mathbb{H}/\Gamma$ is the moduli space for elliptic curves.



Modular Curves as Moduli Spaces

We can generalize this:

- $Y_1(N) \iff (E, P)$, where $|P| = N$.
- $Y_0(N) \iff (E, C)$, where $C \subset E$ cyclic, $|C| = N$.

Proof Sketch

Let E be an elliptic curve, and $P \in E(\mathbb{C})$ have order N .

- $E \cong \mathbb{C}/\Lambda_\tau$
- $P = (c\tau + d)/N + \Lambda_\tau$ HW!!
- Use $\text{SL}_2(\mathbb{Z})$ to send $\frac{c\tau + d}{N} \rightarrow \frac{1}{N}$.
- $\Gamma_1(N)$ fixes $\frac{1}{N} + \Lambda_\tau$.
- Thus, consider τ as an element of $Y_1(N) \cong \mathbb{H}/\Gamma_1(N)$.

Proof Sketch

Conversely:

- Suppose $(E_\tau, P) \cong (E_{\tau'}, P')$, where $E_\tau = \mathbb{C}/\Gamma_\tau$, $P \cong \frac{1}{N} + \Lambda_\tau$.
- There exists some $\gamma \in \Gamma_1(N)$ sending $\tau \rightarrow \tau'$.

Modular Curves as Riemann Surfaces

- $Y_1(N) \cong \mathbb{H}/\Gamma_1(N)$ is the moduli space for enhanced elliptic curves (E, P) , where $P \in E(\mathbb{C})$ is a point of order N .
- $X_1(N)$ is the compactification.
- The cusps do NOT correspond to elliptic curves.

Question

Why do we compactify $Y_1(N)$ to obtain $X_1(N)$?

Modular Curves as Riemann Surfaces

Answer

$X_*(N)$ may be described as an algebraic curve.

In fact, $X_0(N)$ and $X_1(N)$ can be described using polynomials with *rational* coefficients.

Key Idea

Rational points on $X_1(N)$ correspond to elliptic curves E/\mathbb{Q} with a point $P \in E(\mathbb{Q})$ of order N .

Why there are no 11-torsion points

$X_1(11)$ is parametrized by $E_{11} : y^2 - y = x^3 - x^2$.

- All the rational points are cusps, so NO elliptic curves over \mathbb{Q} with 11-torsion.

On the other hand, $X_1(5)$ can be parametrized by $x = y$.

- Has infinitely many rational points, hence there are infinitely many elliptic curves over \mathbb{Q} with points of order 5.

When are points of order 11 possible?

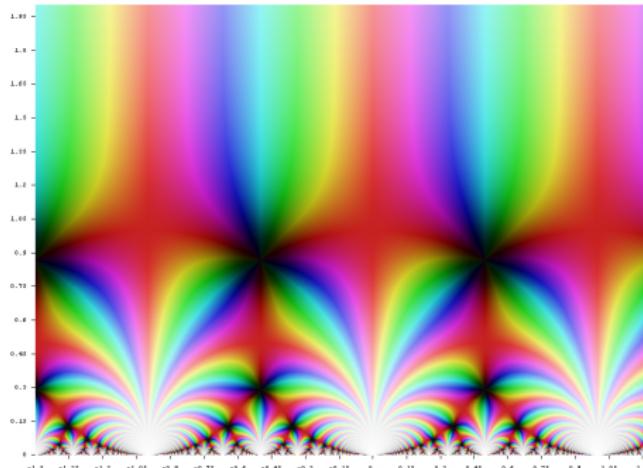
Key Idea

More generally, points in K on $X_1(N)$ correspond to elliptic curves E/K with points of order N .

- Let $K = \mathbb{Q}(\sqrt{2})$.
- Then $P = (\frac{1}{2}, \frac{1}{4}\sqrt{2} + \frac{1}{2}) \in E_{11}(K)$
- P has infinite order!
- Conclusion: infinitely many elliptic curves over K with points of order 11

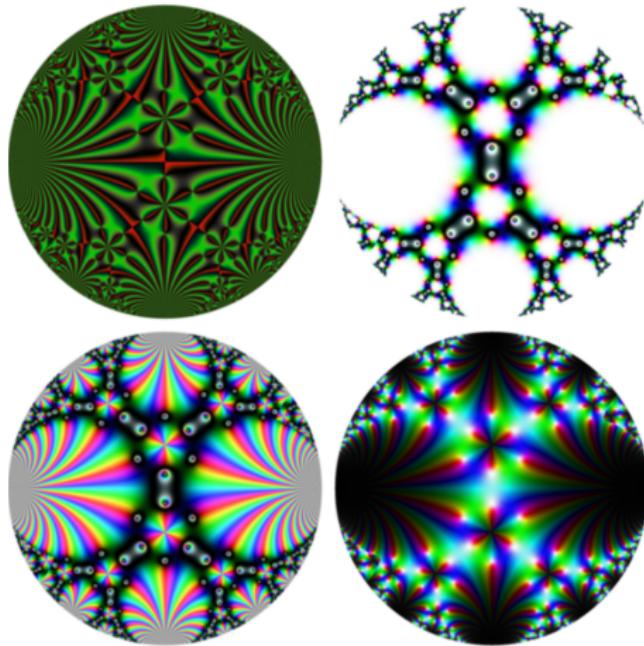
The j -invariant

For each elliptic curve $E = E_\tau$, we can associate a complex number $j(\tau)$ called the j -invariant, which uniquely determines E up to isomorphism. The function $j(\tau)$ is a modular function!



The j -invariant

In the Poincaré disk, it looks like:



What does $X_0(11)$ look like?

The functions $j(11\tau)$ and $j(\tau)$ generate $\mathcal{M}(\Gamma_0(11))$.

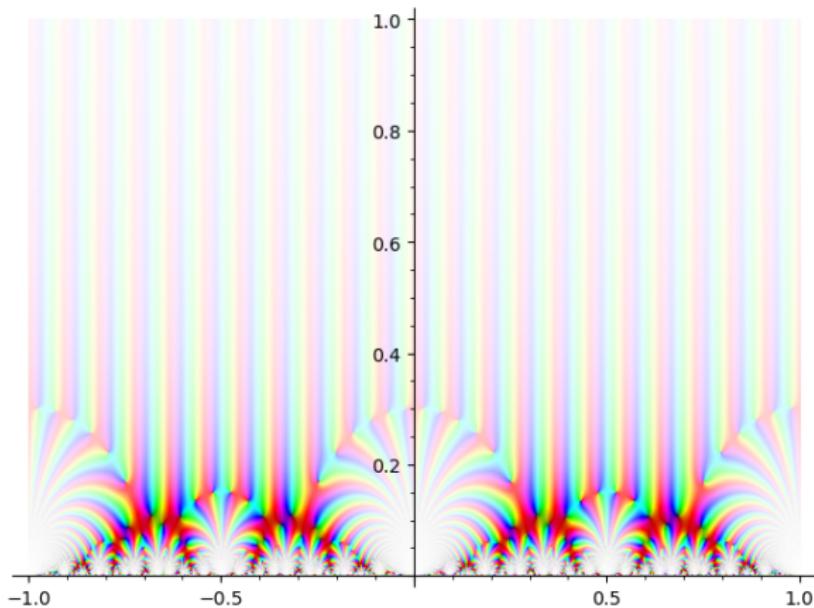
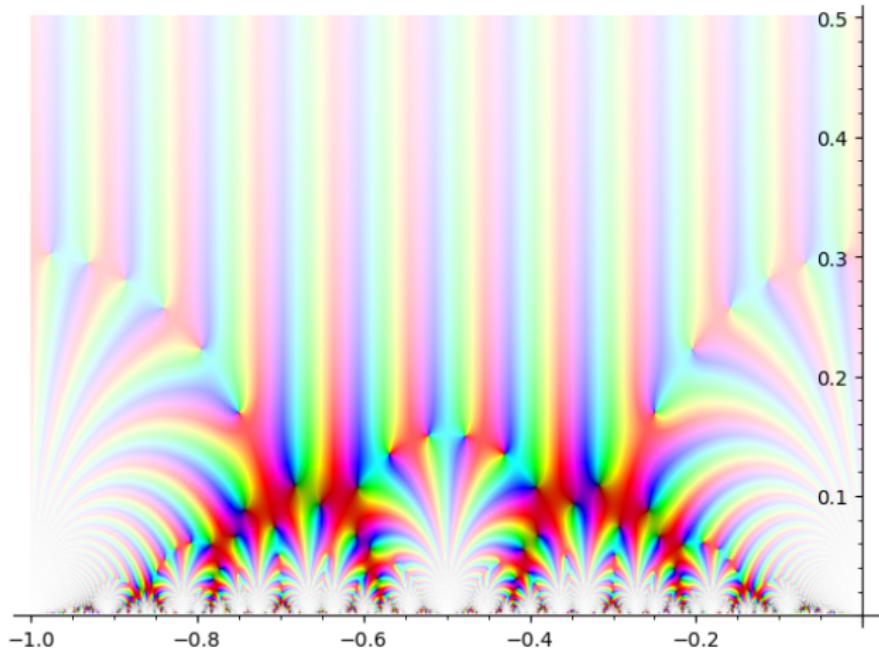


Figure: The modular form $(j(11\tau) + j(\tau))/1728$

Another view of $X_0(11)$ Figure: The modular form $(j(11\tau) + j(\tau))/1728$

References

- Silverman, J. H. (2009). *The Arithmetic of Elliptic Curves* (2nd ed.). Springer.
- Lowry Duda, D. (2021). Visualizing Modular Forms. In *Arithmetic geometry, number theory, and computation*, 537-557. Springer.
- Lowry Duda, D. (2022). *Visualizing Modular Curves*. davidlowryduda.com
- Baaziz, H. (2010). Equations for the modular curve $X_1(N)$ and models of elliptic curves with torsion points. *Math. Comput.*, 79, 2371-2386.
- Stéphane Laurent. (2023). The pretty Klein j -invariant function. R-bloggers. r-bloggers.com
- The LMFDB Collaboration, The L-functions and modular forms database, lmfdb.org