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The Modular Group and the Upper Half-Plane

e The Upper Half-Plane (H): {z € C|Im(z) > 0}. A model of
hyperbolic geometry.

@ The Modular Group SLy(Z): (i Z) where a, b, c,d € Z and
ad — bc =1.

@ Action: The group acts on H by fractional linear transformations:

az+b
Z cz+d”

@ Fundamental Domain: A region in H that contains exactly one
representative from each orbit.

o Extended upper half-plane H* = H U QP! adds a line at infinity. This
will “compactify” the modular curve,
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Recap of Modular Curves

Congruence Subgroups

e o(N): Matrices
a b
m=(2 )
with ¢ =0 (mod N).

e I1(N): Matrices with a,d =1 (mod N) and ¢ =0 (mod N).
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Modular Curves

We have modular curves
X(N) =H"/T(N), Xo(N)=H"/To(N), Xi(N)=H"/T1(N).

Visualize as fundamental domains.

1
™

A “““ TPl =1
R(2)

For I = SLy(Z), the modular curve is topologically equivalent to a sphere.

(NI
N
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Recap of Modular Curves

Visualizing Modular Curves

In the Poincaré disk, the fundamental domains for SL>(Z) and '(11) are:

The modular curve Xp(11) has genus 1.
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Recap of Modular Curves

More Fundamental Domains

(a) Xi(5) (b) Xi(11)
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History of Modular Curves as Moduli Spaces

@ The study of modular curves has roots in the 19th century (Gauss,
Dedekind, Klein, Poincaré).

@ Hecke, Siegel, and Shimura connected modular curves to the
arithmetic of elliptic curves.

@ The modern perspective, viewing modular curves as moduli spaces,
was crystallized in Grothendieck's school in the 1960s.
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Moduli Spaces

Definition (Rough)

A moduli space is a geometric space whose points represent (isomorphism
classes of) algebro-geometric objects of some fixed kind.

@ R is a moduli space for the problem of classifying circles in R? up
to congruence.

e RP! is the moduli space for lines in R? passing through the origin.

o RP? is the moduli space for lines in R passing though the origin.
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Why Moduli Spaces?

Moduli Spaces <=  “solution spaces”

Circles in R? inherit a notion of closeness from the moduli space R~g.
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Modular Curves as Moduli Spaces

Modular Curves as Moduli Spaces

Theorem (Uniformization)

Each point T € H gives an elliptic curve E; = C/A\. and this classifies all
elliptic curves.

Y (1) = H/T is the moduli space for elliptic curves.

3(2)

o

TN 2 = 1
5o )
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Modular Curves as Moduli Spaces

Modular Curves as Moduli Spaces

We can generalize this:
e Yi(N) <= (E,P), where |P|=N.

o Yo(N) <« (E,C), where C C E cyclic, |C| = N.
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Proof Sketch

Let E be an elliptic curve, and P € E(C) have order N.
o E=C/A;
o P=(cr+d)/N+A, HW!!
o Use SL,(Z) to send <754 — 1.
o T1(N) fixes & + A,

@ Thus, consider 7 as an element of Y;(N) = H/I1(N).
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Proof Sketch

Conversely:
@ Suppose (E;, P) = (E./, P"), where E, =C/I',, P = % + A,

@ There exists some v € ['1(N) sending 7 — 7'.
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Modular Curves as Moduli Spaces

Modular Curves as Riemann Surfaces

e Yi(N) = H/I1(N) is the moduli space for enhanced elliptic curves
(E, P), where P € E(C) is a point of order N.

@ Xi(N) is the compactification.
@ The cusps do NOT correspond to elliptic curves.

Why do we compactify Y1(N) to obtain X1(N)?
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Modular Curves as Moduli Spaces

Modular Curves as Riemann Surfaces

X«(N) may be described as an algebraic curve.

In fact, Xp(N) and Xi1(N) can be described using polynomials with
rational coefficients.

Key ldea

Rational points on Xj(N) correspond to elliptic curves E/Q with a point
P € E(Q) of order N.
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Some Applications

Why there are no 11-torsion points

X1(11) is parametrized by Ey1 : y? —y = x3 — x2.

@ All the rational points are cusps, so NO elliptic curves over Q with
11-torsion.

On the other hand, Xi(5) can be parametrized by x = y.

@ Has infinitely many rational points, hence there are infinitely many
elliptic curves over Q with points of order 5.
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When are points of order 11 possible?

Key Ildea

More generally, points in K on Xj(N) correspond to elliptic curves E/K
with points of order N.

o Let K = Q(v2).
® Then P = (3,7V2+ 3) € E11(K)
@ P has infinite order!

@ Conclusion: infinitely many elliptic curves over K with points of order
11

Math 285M Final Presentation Modular Curves as Moduli Spaces December 17, 2025 18/23



Some Applications

The j-invariant

For each elliptic curve E = E;, we can associate a complex number j(7)
called the j-invariant, which uniquely determines E up to isomorphism.
The function j(7) is a modular function!
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Some Applications

The j-invariant

In the Poincaré disk, it looks like:
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What does Xj(11) look like?

The functions j(117) and j(7) generate M(Io(11)).
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Figure: The modular form (j(117) + j(7))/1728
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Another view of Xp(11)
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Figure: The modular form (j(117) + j(7))/1728
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Some Applications
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