
Stochastic Gradient Descent: A Fundamental

Method in Stochastic Optimization

Shihan Kanungo

Abstract

Stochastic Gradient Descent (SGD) is a cornerstone algorithm in modern optimization,
especially prevalent in large-scale machine learning. This paper introduces the theoret-
ical foundation of SGD, contrasts it with deterministic gradient descent, and explores
its convergence properties, practical implementation considerations, and typical appli-
cations in applied mathematics and data science. We also give some basic numerical
simulations which showcase the strengths of different variants of SGD.

1 Introduction

Optimization lies at the heart of many problems in applied mathematics, data science, and
engineering. In particular, minimizing a loss function to fit models to data is ubiquitous.
Gradient descent is a classical method for such optimization tasks. However, in contexts
involving massive datasets, evaluating the full gradient at each step becomes computation-
ally prohibitive. Stochastic Gradient Descent (SGD), a stochastic approximation of
gradient descent, offers a scalable alternative.

SGD introduces randomness into the optimization process by estimating gradients from
random subsets of data. This makes the method both faster and more noise-resilient, but
also introduces analytical complexity. However, there are many ways to improve the speed
and convergence of SGD, and in general, it is far more efficient to use SGD rather than
standard gradient descent.

SGD is ubiquitous in training neural networks, which have datasets that are far too large
for standard gradient descent to deal with.

In Section 2 we introduce SGD and discuss its convergence properties.

There are many different variations on vanilla SGD that deal with some of its weaknesses.
Mini-batch gradient descent combines the strengths of SGD and standard gradient descent,
and it is the standard method for neural networks. Momentum is an approach that helps
SGD navigate ravines, which are points where the loss function curves much more steeply
in one direction than another. Adagrad is a method that automatically adjusts the step
size of the algorithm, and it gives very fast convergence compared to the other methods.
We discuss these approaches and others in more detail in Section 3.

Finally, in Section 4 we provide some numerical examples highlighting the strengths of the
different variations of SGD.

1

2 Stochastic Gradient Descent

Let us consider the standard optimization problem:

min
θ∈Rd

f(θ),

where f : Rd → R is a differentiable function and θ is the vector of parameters. Typically
f has the form

f(θ) =
1

n

n∑
i=1

fi(θ),

where fi(θ) is the loss function corresponding to the i’th point in the dataset.

As an example, consider least-squares linear regression, with data points (x1, y1), . . . , (xn, yn).
We want to find the line θ0 + θ1x minimizing

f(θ) =
1

n

n∑
i=1

(θ0 + θ1xi − yi)
2.

Gradient Descent updates parameters via:

θk+1 = θk − ηk∇f(θk),

where ηk is the step size (learning rate).

However, computing the gradient ∇f can be computationally expensive when n is very
large. This happens in situations such as machine learning, where the training dataset is
extremely big.

Stochastic Gradient Descent (SGD) provides a way to circumvent this problem. In-
stead of taking the full gradient of f , at each step it takes the gradient of a randomly chosen
loss function fik . In other words, the iteration step is

θk+1 = θk − ηk∇fik(θk),

where ik ∈ {1, . . . , n} is randomly chosen.1 This process is much less expensive, because
we only need to take the gradient of one of the fi’s at each step, rather than all n of
them. Compared to standard gradient descent, SGD has some drawbacks. First of all, the
convergence rate of SGD is significantly slower. Second, since SGD is a random process,
it will inevitably have some noise, which makes it less accurate. But on the plus side, this
noise lets it escape local minima and converge to a true minimum.

Let’s see what the explicit form of SGD is in our example. We have

fi(θ) = (θ0 + θ1xi − yi)
2.

1In general, we sample the ik by randomly shuffling 1, . . . , n and repeating. This ensures that each fi is
chosen the same number of times.

2

Hence,

∇fi(θ) =

[
2(θ0 + θ1xi − yi)

2xi(θ0 + θ1xi − yi)

]
.

Thus, the iteration step of SGD has the form

θk+1 = θk − ηk∇

[
2(θ0 + θ1xik − yik)

2xik(θ0 + θ1xik − yik)

]
.

Finally, there is a third type of gradient descent, called Mini-Batch Gradient Descent,
which gives us the “best of both worlds”. Instead of sampling a single fi at a time, we
sample m at a time for some m < n, so the iteration step is

θk+1 = θk − ηk

m∑
p=1

f
i
(p)
k

(θk),

where i
(1)
k , . . . , i

(m)
k are randomly chosen. Additionally, it can make use of highly optimized

matrix optimizations that make computing the gradient with respect to a mini-batch This
reduces variance of parameter updates and hence increases stability. Mini-Batch gradient
descent is the method of choice for training neural networks, which have huge data sets.

2.1 Convergence of SGD

When f is a convex function, gradient descent is guaranteed to converge to the global
minimum, even when the step size η is held constant. Furthermore, it can be shown that
under certain conditions on f , the convergence rate is in fact linear.

However, SGD does not behave as nicely. In particular, we need

lim
k→∞

∑k
t=1 η

2
k∑k

t=1 ηk
= 0.

Thus, a constant step size will not give us convergence, and instead SGD will oscillate around
the minimum. We need to have a decreasing step size for SGD to converge. Assuming a
step size of the form

η

kα
, α = 1

2

gives the best convergence rate. Unfortunately, even this does not give the linear conver-
gence rate enjoyed by standard gradient descent.

Thus, SGD provides more efficiency at the cost of a lower convergence rate.

3 Variations of SGD

In this section, we discuss some extensions of SGD that offer solutions to the drawbacks of
standard SGD. For simplicity, we will only consider the single sample case, but these can
all be generalized to the mini-batch case.

3

3.1 Momentum

Standard SGD has trouble navigating ravines, which are areas where the surface curves
much more steeply in one direction than the other. In this type of situation, SGD oscillates
in the ravine and only makes slow progress along the bottom, towards the minimum.

Momentum is a way to fix this problem. As the title suggest, the update vector vk+1 has
an extra term that “remembers” the previous step, so we tend to go in the same direction
as before. Explicity:

vt = γvt−1 + η∇fik(θk)

θt+1 = θt − vt.

Here γ is a constant which is usually set to be 1 − ε for a small positive constant ε. The
momentum approach can be thought of as rolling a ball down a hill, and the ball gets faster
and faster until it hits its terminal velocity. This helps SGD deal with ravines and also
makes convergence faster.

3.2 Nesterov Accelerated Gradient

Unfortunately, the momentum approach has some drawbacks of its own. Consider valley
that the ball is rolling into. With the momentum approach, the ball will be hurtling down
so fast that it will overshoot the minimum before it sees that it should turn around, and
then it will start accelerating. We would like a more intelligent ball that can sense when
hill is starting to slope. What Nesterov Accelerated Gradient does is to take the gradient
after we take the momentum step. In other words:

vt = γvt−1 + η∇fik(θk − γvt−1)

θt+1 = θt − vt.

This way, the ball knows when to slow down.

3.3 Adagrad

In both of the previous two variations, the step size η remains constant. However, an
adaptive step size makes the algorithm both more accurate and more efficient.

The basic idea is as follows: parameters with low-frequency features (i.e. the gradient is
small) should have large step size, and parameters with high-frequency features (i.e. the
gradient is large) should have small step size.

We introduce the notation:
gk,i = (∇fi(θk))i,

and define the diagonal matrix Gk to have the (i, i)-th entry equal to the sum of the squares
of all the previous gk,i, i.e.

(Gk)ii =
k∑

t=0

g2t,i.

4

Then the update step has the form

(θk+1)i = (θk)i −
η√

(Gt)ii + ϵ
· gk,i,

or in vector form,

θk+1 = θk −
η√

Gk + ϵ
⊙ gk,

with ⊙ denoting element-wise vector multiplication. The ϵ term is simply there to avoid
division by zero. Adagrad performs much better than standard SGD on sparse datasets. It
was used to train large-scale neural networks at Google and was able to recognize cats in
Youtube videos. Additionally, SGD famously has trouble escaping saddle points. Adagrad
(and RMSprop below) are much better at dealing with saddle points.

However, Adagrad has a significant drawback, which is its aggressively decreasing learning
rate. Variants of Adagrad deal with this using a similar idea to the Momentum approach.
One such method is RMSprop.

3.4 RMSprop

RMSProp, or Root Mean Square Propagation, is an adaptive learning rate optimization
algorithm used in training deep neural networks. It adjusts the learning rate for each
parameter based on the average of the squared gradients, helping to improve convergence
speed and stability during training.

The idea of RMSprop is to restrict the window of the past squared gradients to some fixed
size. We define a weighted average E(g2)k recursively by

E(g2)k+1 = γE(g2)k + (1− γ)g2k,

where γ, like in the Momentum approach, is a constant less than 1. This way, RMSprop
can adapt to the local behavior of the loss function. Then our update will be

θk+1 = θk −
η√

E[g2]k + ϵ
gk.

There are other variations, such as Adadelta and Adam, which behave similarly but are a
bit more complicated.

4 Numerical examples

A Python implementation of SGD for the least-squares problem discussed earlier gives the
following outputs, shown in Fig. 1. and Fig. 2.

As seen from Fig. 2., the loss function Q(θ) has noise due to random fluctuations, but
it does tend to the minimum value. In contrast, standard gradient descent would have a
smooth plot.

5

Fig. 1. Least-squares minimizing line Fig. 2. Q(θk) versus k

Next, implementing Momentum, we get the following plot comparing it to SGD:

Fig. 3. Momentum vs. standard SGD

As expected, Momentum converges faster than SGD.

Next, we look at a similar problem involving a very large dataset, and show how SGD is
more efficient than standard gradient descent.

Consider data points of the form (x1, x2, y) where y = 2x1 − 3x2 + noise. Similarly to the
least-squares case, we use ŷ = θ1x1 + θ2x2 as our estimator, and we want to minimize the
mean square error (i.e. least-squares regression). Implementing both standard gradient
descent and SGD, the comparisons of the loss functions are shown:

6

Fig. 4. SGD vs Standard Gradient Descent

They give equally good results, but SGD is about 3 times faster for 5 · 105 data points, and
even faster for more.

References

1. Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.
Proceedings of COMPSTAT.

2. Bubeck, S. (2015). Convex Optimization: Algorithms and Complexity. Foundations
and Trends in Machine Learning.

3. Garrigos, G. and Gower, R. M. (2023). Handbook of Convergence Theorems for
(Stochastic) Gradient Methods. Preprint [arXiv]

4. Monro, S. and Robbins, H. (1951). A Stochastic Approximation Method. Annals of
Mathematical Statistics.

5. Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. Preprint
[arXiv]

Department of Mathematics, San José State University, San José, CA 95192

Email address: shihan.kanungo@sjsu.edu

7

https://arxiv.org/abs/2301.11235
https://arxiv.org/abs/1609.04747

Appendix: Code

Here is the code used for the first plot:

import matplotlib.pyplot as plt

import numpy as np

plt.rc(’xtick’, labelsize =15)

plt.rc(’ytick’, labelsize =15)

step size

eta = 0.001

data

x = [1,2,3,4,5,6,7,8,9]

y = [0,3,2,1,6,5,7,7,10]

n = 9

loss function

def Q(w):

q = 0

for i in range(n):

q += (w[0]+w[1]*x[i]-y[i])**2

return q

initialize parameters

w = np.empty (2)

w[0]=0

w[1]=1

number of steps

n_steps = 1000

t_list = [0]

t = 0

Q_list = [Q(w)]

create a list of the indices from 0 to n

indices = []

for i in range(n):

indices.append(i)

implement SGD

for _ in range(n_steps):

s = np.random.permutation(indices)

for i in range(n):

w -= eta*np.array ([2*(w[0]+w[1]*x[s[i]]-y[s[i]]) ,2*x[s[i]]*(w

[0]+w[1]*x[s[i]]-y[s[i]])])

t += 1

t_list.append(t)

Q_list.append(Q(w))

plot the data along with the least -squares appproximation

a = np.linspace(min(x),max(x) ,2)

8

b = w[0]+w[1]*a

plt.plot(x,y, "o")

plt.plot(a,b)

plt.show()

plot the loss function versus time

plt.plot(t_list ,Q_list)

To implement the Momentum algorithm, we only need to make a small modification to the
code:

v = np.array ([0 ,0])

implement Momentum

for _ in range(n_steps):

s = np.random.permutation(indices)

for i in range(n):

vnew = eta *np.array ([2*(w[0]+w[1]*x[s[i]]-y[s[i]]) ,2*x[s[i

]]*(w[0]+w[1]*x[s[i]]-y[s[i]])])

w -= gamma * v

v = vnew

w -= v

t += 1

t_list.append(t)

Q_list.append(Q(w))

For the third plot, I used the following code

import matplotlib.pyplot as plt

import numpy as np

import time

plt.rc(’xtick’, labelsize =15)

plt.rc(’ytick’, labelsize =15)

N = 500000

X = np.random.randn(N, 2)

true_w = np.array ([2.0, -3.0])

y = X @ true_w + np.random.randn(N) * 2 # add noise

def compute_loss(w, X, y):

preds = X @ w

return np.mean((preds - y) ** 2)

def compute_gradient(w, X, y):

return 2 * X.T @ (X @ w - y) / len(y)

def gradient_descent(X, y, eta =0.01, steps =1000):

start_time = time.perf_counter ()

w = np.zeros (2)

losses = []

9

for _ in range(steps):

grad = compute_gradient(w, X, y)

w -= eta * grad

losses.append(compute_loss(w, X, y))

end_time = time.perf_counter ()

print(end_time -start_time)

return w, losses

def stochastic_gradient_descent(X, y, eta =0.01, steps =1000):

start_time = time.perf_counter ()

w = np.zeros (2)

losses = []

for i in range(steps):

idx = np.random.randint(len(X))

xi = X[idx:idx +1]

yi = y[idx:idx +1]

grad = compute_gradient(w, xi, yi)

w -= eta * grad

losses.append(compute_loss(w, X, y)) # eval on full data

end_time = time.perf_counter ()

print(end_time -start_time)

return w, losses

print(gradient_descent(X,y ,0.001 ,100000) [0])

gd = gradient_descent(X,y ,0.001 ,2000)

sgd = stochastic_gradient_descent(X,y ,0.001 ,2000)

plt.plot(gd[1], label = ’GD’)

plt.plot(sgd[1], label = ’SGD’)

print(gd[0])

print(sgd [0])

plt.legend ()

10

	Introduction
	Stochastic Gradient Descent
	Convergence of SGD

	Variations of SGD
	Momentum
	Nesterov Accelerated Gradient
	Adagrad
	RMSprop

	Numerical examples

