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Abstract. Motivated with a problem in spectroscopy, Sloane and Harwit
conjectured in 1976 what is the minimal Frobenius norm of the inverse of
a matrix having all entries from the interval [0, 1]. This is known as the
S-matrix conjecture. In 1987, Cheng proved their conjecture in the case of
odd dimensions, while for even dimensions he obtained a slightly weaker
lower bound for the norm. In this report we discuss Frankel and Urschel’s
proof of the S-matrix conjecture for all even n larger than a small constant.

1. Introduction

Given a n × n nonnegative invertible matrix A with ∥A∥max ≤ 1 (i.e. all entries
of A are ≤ 1), what is the minimum value of ∥A−1∥F , the Frobenius norm of
the inverse of A? This question is answered by the S-matrix conjecture.
Harwit and Sloane conjectured the following in 1976.

Conjecture 1 (S-matrix conjecture). For an invertible nonnegative n × n
matrix A with ∥A∥max ≤ 1, ∥∥∥A−1

∥∥∥
F

≥ 2n

n + 1 .

Equality holds if and only if A is an S-matrix.

We say A is an S-matrix if Aij ∈ {0, 1} and

AT A = n + 1
4 (I + 11T ),

where 1 is the all-ones vector. Since n+1
4 is an integer only when n ≡ 3 (mod 4),

equality can hold if and only if n ≡ 3 (mod 4).
This question was motivated by a problem in spectroscopy, where we have n
beams of light with different wavelengths, and we want to accurately measure
the intensities of the different wavelengths using a detector that has some
random error.
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The case where n is odd was resolved by Cheng, but when n was even, the
proof they used gave the following, slightly worse, bound

(†) 2
√

n2 − 2n + 2
n

.

Various other proofs of the same bounds were subsequently found, but no one
was able to prove the even n case. Finally, in 2025, Frankel and Urschel [1]
were able to prove the S-matrix conjecture for all even n larger than a small
constant.
We will discuss the motivation for the S-matrix conjecture in Section 2, and
then outline Frankel and Urschel’s proof in Section 3.
All matrices discussed here are real.

2. Motivation

Suppose we have n objects of weights w1, . . . , wn and we want to measure them.
We are allowed n measurements total, and we are given one of the following
two scales:

Fig. 1 Fig. 2

However, the i’th meaurement will have some error ei.
We assume that the ei are independent random variables,

E(ei) = 0, E(e2
i ) = σ2.

To measure the wi, we can try the naïve approach:
m1 = w1 + e1

m2 = w2 + e2

m3 = w3 + e3

m4 = w4 + e4.

Using ŵi to denote our estimate for wi, we have
ŵi = mi = wi + ei.
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The mean square error for ŵi is thus σ2. However, we can do much better than
this. The guiding idea is as follows:

If we weigh an object n times and average the results,
the error decreases by a factor of

√
n.

Obviously, we could just take more measurements to increase the accuracy;
but recall that we were only allowed n measurements.
Consider the following weighing scheme (corresponding to the scale in Fig 1):

m1 = w1 + w2 + w3 + w4 + e1

m2 = w1 − w2 + w3 − w4 + e2

m3 = w1 + w2 − w3 − w4 + e3

m4 = w1 − w2 − w3 + w4 + e4

Solving the equations, we get

ŵ1 = m1 + m2 + m3 + m4

4 = w1 + e1 + e2 + e3 + e4

4 , etc.

Using basic statistics, the mean square error of ŵ1 is σ2/4; similarly for the
other ŵi. Thus, we have decreased the mean square error by a factor of four!
For general n, we use a n × n matrix to describe the weighing setup:

m = Aw + e,

where

m =


m1
...

mn

 , w =


w1
...

wn

 , e =


e1
...

en

 .

Then our estimate for w is
ŵ = A−1m = w + A−1e.

The sum of the mean square errors of the ŵi is the sum of the variances of the
entries of A−1e. Writing A−1 = [a−1

ij ], it is easily checked that this is

σ2

 n∑
i,j=1

a2
ij

 = σ2
∥∥∥A−1

∥∥∥2

F
.

Thus, the best possible weighing design corresponds to the matrices that
minimize ∥A−1∥F !
What are the constraints on A? If we are using the scale in Fig 1, then we must
have Aij ∈ {−1, 0, 1}, because 1 corresponds to the weight on the right pan,
0 corresponds to the weight not on either pan, −1 corresponds to the weight
on the left pan. If we use the scale in Fig 2, then we must have Aij ∈ {0, 1}.
We will generalize and allow Aij ∈ [−1, 1] in the first case and Aij ∈ [0, 1] in
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the second case. The reason for this is that an analogous problem exists in
spectroscopy, where we use slits to allow certain wavelengths of light to be
detected, but we can also use partially open slits, corresponding to Aij not
being an integer. Thus, our two optimization problems are to minimize ∥A−1∥F

subject to:
(1) A is a invertible matrix with ∥A∥max ≤ 1
(2) A is a nonnegative invertible matrix with ∥A∥max ≤ 1

We can answer the first question quite easily. Let ⟨X, Y ⟩ = tr(Y T X) be the
Frobenius inner product. Then

n2 = ⟨AT , A−1⟩2
F

≤ ∥A∥2
F

∥∥∥A−1
∥∥∥2

F

≤ n2 ∥A∥2
max

∥∥∥A−1
∥∥∥2

F
.

So if ∥A∥max ≤ 1, then ∥A−1∥F ≥ 1.
Furthermore, if Aij ∈ {±1} and AT = cA−1 then equality holds.

AT = cA−1 ⇐⇒ AT A = cI

Hence c = n and AT A = nI. Such matrices are called Hadamard matrices and
correspond to the best possible weighing designs.

3. Proof

We now discuss the proof of the S-matrix conjecture for even n. First, we
discuss one of the proofs of Cheng’s bound (†), given by Drnovšek.
Let n be even, A invertible and nonnegative with ∥A∥max ≤ 1,

F (A) =
[ 0 1T

1
√

n
n−2

n
2 A−1

]
,

G(A) =
[ 0 1T

1
√

n−2
2

(
2(n−1)

n−2 I − 2
n
11T

)
AT

]
,

H(A) =

√
n(n − 2)

2(n − 1)

√ n

n − 2
n

2 A−1 −
√

n − 2
2

(
2(n − 1)

n − 2 I − 2
n

11T

)
AT

 .
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We can think of H(A) as measuring how close F (A) and G(A) are to each
other. By Cauchy-Schwartz,

n2(n2 − 2)2

(n − 2)2 = ⟨F (A), G(A)⟩2
F

≤ ∥F (A)∥2
F ∥G(A)∥2

F

=
(

2n + n3

4(n − 2)
∥∥∥A−1

∥∥∥2

F

)
(2n + h(A))

where

h(A) =
∥∥∥∥∥∥
√

n − 2
n

(2n − 2
n − 2 I − 2

n
11T

)
AT

∥∥∥∥∥∥
2

F

= 4(n − 1)2

n(n − 2)

n∑
i,j=1

A2
ij − 4

n

n∑
i=1

 n∑
j=1

Aij

2

.

By taking the derivative of h(A) with respect to an entry Aij , we see that it is
never 0 for Aij ∈ (0, 1). So h(A) is maximized when Aij ∈ {0, 1}. In this case,
it is easily checked that h(A) is maximized when A1 = n

2 I, in which case,

h(A) ≤ n(n2 − 2n + 2)
n − 2 .

Plugging in this to above, we get the bound∥∥∥A−1
∥∥∥

F
≥ 2

√
n2 − 2n + 2

n
.

For the main proof, suppose B is a counterexample to the S-matrix conjecture.
Then ∥B∥max ≤ 1 but ∥B−1∥F < 2n

n+1 .
The argument above must be nearly tight, since

2 ·
√

n2 − 2n + 2
n

≈ 2n

n + 1 .

Hence all of the inequalities must be nearly equalities, which implies B must
have some structure.
In the following lemma which is the core of the proof, this intuition is formalized,
and after each statement we explain what it heuristically means.

Lemma 2. Let r = B1 − (n−1)2

2(n−2)1, c = n(n2−2n+2)
n−2 − h(B). Then 0 ≤ c < 1,

(1) ∥r∥2
2 + (n − 1)2

(n − 2)

n∑
i,j=1

Bij(1 − Bij) = cn

4 + n

4(n − 2)2

i.e., B is almost a 01-matrix and its row sums are almost n
2
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(2) ∥H(B)∥2
F ≤ n(n − 2)

4(n − 1)2

[
n(n2 − 2n − 2)
(n − 2)(n + 1)2 − c

]
i.e., F (B), G(B) are almost the same.

(3) B(BT + H(B)) = n2

4(n − 1)I + (n − 1)3

4n(n − 2)11T + n − 1
2n

(r1 + 1r) + n − 2
n(n − 1)rrT

i.e., B · BT plus a small perturbation has off-diagonal entries which
are almost 1

4 away from an integer

The rest of the proof is quite involved, using 3 more lemmas, but the main
idea is that H(B) is too small for B(BT + H(B)) to have off-diagonal entries
which are almost 1/4 away from an integer, resulting in a contradiction.
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